PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The static and dynamic compressive behaviour of selected aluminium alloys

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The mechanical properties of structural aluminium alloys EN AW-5083 and EN AW-6082 in the ‘H111’ and ‘T6’ conditions, respectively, subjected to compressive loadings in the quasi- static and dynamic strain rate regimes, are investigated. Both alloys are used as structural components not only in car body design or ship building, but also in civil engineering. Therefore, compression tests at room temperature were conducted using a servohydraulic Instron machine, in order to determine the materials‘ behaviour at low and intermediate rates of deformation. In addition, to predict the dynamic response of these materials, the Split Hopkinson Pressure Bar (SHPB) technique was utilized. For alloy 5083-H111, a changeover from negative to positive strain rate sensitivity at dynamic strain rates is observable, whilst alloy 6082-T6 exhibits a mild trend towards positive strain-rate sensitivity. Furthermore, the coefficients of the Johnson-Cook model, that are valid under dynamic conditions, are determined. The finite element simulation of SHPB experiments shows that the constitutive model represents the materials behaviour quite well.
Słowa kluczowe
Rocznik
Strony
85--100
Opis fizyczny
Bibliogr. 21 poz., rys., wykr.
Twórcy
autor
autor
  • Warsaw University of Technology Faculty of Civil Engineering Department for Strength of Materials 16 Armii Ludowej Av., 00-637 Warsaw, Poland
Bibliografia
  • 1. H. Wilquin, Aluminium in Building – Construction and Design [in German], Birkh¨auser Verlag f¨ur Architekten, Berlin, 2001.
  • 2. G. Valtinat, Aluminium in Structural Engineering [in German], Ernst & Sohn, 2003.
  • 3. T. Siwowski, Aluminium road bridges – past, present and future [in Polish], Drogi i Mosty, 1, 39–73, 2005.
  • 4. Eurocode 9, ENV 1999-1-1, Design of aluminium structures – Part 1.1: General rules – General rules and rules for buildings, 1997.
  • 5. A. M. Bragov and A. K. Lumanov, Elastoplastic Properties of Aluminum Alloy AMg6 with High Strain Rates, Journal of Applied Mechanics and Technical Physics, 5, 755–758,1988.
  • 6. M. Wagenhofer, M. Erickson–Natishan, and R. W. Armstrong, Influences of strain rate and grain size on yield and serrated flow in commercial Al-Mg alloy 5086, Scripta Materialia, 41, 1177–1184, 1999.
  • 7. A. H. Clausen, T. Børvik, O. S. Hopperstad, and A. Benallal, Flow and fracture characteristics of aluminium alloy AA5083-H116 as function of strain rate, temperature and triaxiality, Materials Science and Engineering A, 364, 260–272, 2003.
  • 8. M. J. Hadianfard, R. Smerd, S. Winkler, and M. Worswick, Effects of strain rate on mechanical properties and failure mechanism of structural Al-Mg alloys, Materials Science and Engineering A, 492, 283–292, 2008.
  • 9. Y. Chen, A. H. Clausen, O. S. Hopperstad, and M. Langseth, Stress-strain behaviour of aluminium alloys at a wide range of strain rates, International Journal of Solids and Structures, 46, 3825–3835, 2009.
  • 10. O. S. Lee and M. S. Kim, Dynamic material property characterization by using Split Hopkinson pressure bar (SHPB) technique, Nuclear Engineering and Design, 226, 119– 125, 2003.
  • 11. J. E. Field, W. G. Walley, W. G. Proud, H. T. Goldrein, and C. R. Siviour, Review of experimental techniques for high rate of deformation and shock studies, International Journal of Impact Engineering, 30, 725–775, 2004.
  • 12. H. Kolsky, An Investigation of the Mechanical Properties of Materials at Very High Rates of Loading, Proceedings of the Physical Society of London, B62, 676, 1949.
  • 13. M. A. Meyers, Dynamic Behavior of Materials, New York, John Wiley & Sons, Inc., 1994.
  • 14. M. M. Al–Mousawi, S. R. Reid, and W. F. Deans, The use of the split Hopkinson pressure bar techniques in high strain rate materials testing, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 211, 273– 292, 1996.
  • 15. E. D. H. Davies and S. C. Hunter, The dynamic compression testing of solids by the method of split Hopkinson pressure bar, Journal of the Mechanics and Physics of Solids, 11, 155–181, 1963.
  • 16. D. A. Gorham and X. J. Wu, An empirical method for correcting dispersion in pressure bar measurements of impact stress, Measurements Science and Technology, 7, 1227–1232, 1996.
  • 17. ABAQUS/Explicit Manual, Getting Started with ABAQUS, Version 6.9.
  • 18. T. Belytschko, W. K. Liu, and B. Moran, Nonlinear Finite Elements for Continua and Structures, Chichester, John Wiley & Sons, Inc., 2000.
  • 19. G. R. Johnson and W. M. Cook, A Constitutive Model and Data for Metals Subjected to Large Strains and High Temperatures, [in:] Proceedings of the Seventh International Symposium on Ballistic, Hague, The Netherlands, 1983.
  • 20. T. Børvik, A. H. Clausen, M. Eriksson, T. Berstad, O. S. Hopperstad, and M. Langseth, Experimental and numerical study on the perforation of AA6005-T6 panels, International Journal of Impact Engineering, 32, 35–64, 2005.
  • 21. H. Ram´ırez and C. Rubio–Gonzalez, Finite-Element simulation of wave propagation and dispersion in Hopkinson bar test, Materials & Design, 27, 36–44, 2006.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0055-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.