Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The well-known yield condition for isotropic materials, known as the M.T. Huber (and R. von Mises, H. Hencky) yield condition, has oryginally been proposed by J.C. Maxwell (see Appendix 2) in 1856. Maxwell and Huber atttributed the following physical sense to the criterion: the material stays elastic as long as the distortion energydoes not reach the critical value. The attempt made by W. Olszak and W. Urbanowski, who tried to generalize the criterion to anisotropic bodies, is not convincing owing to the fact that, in the case of anisotropic media, decomposition of the total elastic energy into the parts connected with the change of volume and the change of shape is impossible. The notion of “energy-ortogonal” states of stress is introduced in the paper. One state of stress is energy-orthogonal to another state of stress if the ?rst one does not perform any work along the deformations produced by the other. The following theorem is proved: each limit criterion may be represented as a certain condition imposed upon a linear combination of elastic energies corresponding to a uniquely determined (for the given material) pari-wise energy-orthogonal, additive components of the total state of stress. Hence, each quadratic criterion has a de?nite energy interpretation. Moreover, it is shown that each limit criterion may be written in the form of an ineguality bounding the accumulated elastic energy. Considered are also the problems of possible forms of coupling of elastic properties of materials with the corresponding limit criteria.
Czasopismo
Rocznik
Tom
Strony
31--63
Opis fizyczny
Bibliogr. 30 poz., rys., wykr.
Twórcy
autor
- Polska Akademia Nauk, Instytut Podstawowych Problemów Techniki, Warszawa
Bibliografia
- 1. M. T. Huber, Specific work of strain as a measure of material effort [in Polish], Czasopismo Techniczne, XXII, Lwow, 1904, also English translation: Arch. Mech., 56, 173– 190, 2004.
- 2. R. Mises, Mechanik der festen K¨orper im plastisch-deformablen Zustand, Nachr. von derK¨oniglichen Geselschaft der Wissenschaften zu G¨otingen, Math. Phys., 1, Kl. 4, 582–592,1913.
- 3. H. Hencky, Zur Theorie plastischer Deformationen und der hierdurch im Material hervorgerufenen Nachspannungen, ZAMM, 4, 323–334, 1924.
- 4. H. Mierzejewski, Foundations of Mechanics of Plastic Solids [in Polish], Warszawa,1927.
- 5. J. C. Maxwell, Proc. Cambridge Phil. Soc., 32, 1936 (cf. also: Origins of Clerk Maxwell’selectric ideas as described in familiar letters to William Thompson, ed. by Sir J. Larmor,Cambridge at Univ. Press, 1937).
- 6. G. Green, On the laws of the reflection and refraction of light at the common surface oftwo non-crystallized media, Trans. Of the Cambridge Phil. Soc., VII, 1–24, 1839 (cf. also:Math. Papers of the late George Green, 1971).
- 7. G. G. Stokes, On the theories of the internal friction of fluids in motion of elastic solids,Trans. of the Cambridge Phil. Soc., VIII, 287–319, 1849 (cf. also Math. Papers, I, 75–129).
- 8. H. Helmhotz, Dynamic continuerlich verbreiteten Massen, Leipzig, 1902.
- 9. A. Foppl, L. F ¨ oppl ¨ , Drang und Zwang, I, M¨unchen u. Berlin, 1920.
- 10. E. Beltrami, Sulla conditioni di resistenza dei corpi elastici, Rend. Ist. Lomb., II, 18,1885.
- 11. B. P. High, Strain-energy function and elastic limit, Rpt. Brit.Association for the Advancement of Sciences, 486, 1919, Engineering, CIX, 158–160, 1920.
- 12. W. Burzyński, Studium nad hipotezami wytężenia, Lwów, 1928 (cf. also: Dzieła Wybrane,t. I, PWN, Warszawa, 1982, 67–258; and English translation: Selected passages fromWłodzimierz Burzyński’s doctoral dissertation Study on Material Effort Hypotheses, Engineering Transactions, 57, 3–4, 185–215, 2009.
- 13. M. M. Filonenko–Borodich, Mechanical theories of strength [in Russian], Izd. MGU,Moskva 1961.
- 14. V. V. Novozhilov, About physical meaning of stress invariants [in Russian], Prikl. Mat.Mekh, 15, 2, 1951.
- 15. W. Olszak, W. Urbanowski, The plastic potential and the generalized distortion energy,Arch. Mech. Stos., 8, 4, 1956.
- 16. W. Olszak, J. Ostrowska–Maciejewska, The plastic potential in the theory ofanisotropic elastic-plastic bodies, Engineering Fracture Mechanics, 21, 625–632, 1985.
- 17. A. L. Cauchy, Sur les ´equations diff´erentielles d’equilibre ou de mouvement pour unsyst´eme de points mat´eriels sollicit´es par des forces d’attraction ou de r´epulsion mutuelle,Exercises de math´ematiques, 4, 129–139, 1829.
- 18. I. Todhunter, K. Pearson, A history of the theory of elasticity and of the strength ofmaterials, I, Univ. Press, Cambridge, 1886.
- 19. J. Rychlewski, ¿CEIIINOSSSTTUVÀ Mathematical structure of elastic bodies [inRussian], Institut Problem Mekhaniki AN SSSR, preprint 217, 1983.
- 20. V. A. Lomakhin, About the non-linear theory of elasticity and plasticity of anisotropiccontinua [in Russian], Izv. AN SSSR, OTN Mekh. i Mashinnostr., 4, 60–64, 1960.
- 21. J. Rychlewski, Dinh laut Hooke hong cach mo ta moi, Bao cao tai HOI THAO QUOCTE CO HOC, Hanoi, 4, 252–256, 1983.
- 22. J. Rychlewski, On thermoelastic constants, Arch. Mech., 36, 1, 77–95, 1984.
- 23. J. Rychlewski, About Hooke’s law [in Russian], Prikl. Mat. Mekh., 48, 420–435, 1984;also in English: J. Applied Mathematics and Mechanics, 48, 303–314, 1984.
- 24. J. Rychlewski, About the non-coaxiality of elastic deformations and stresses [in Russian],Izv. RAN MTT, 101–104, 1984.
- 25. A. I. Malcev, Foundations of Linear Algebra [in Russian], Gostexizdat, Moskva, 1956.
- 26. I. M. Glazman, Yu. I. Lyubich, Finite dimensional linear analysis [in Russian], Nayka,Moskva, 1969.
- 27. R. Mises, Mechanik der plastischen Form¨anderung von Kristallen, ZAMM, 8, 161–185,1928.
- 28. R. Hill, The Mathematical Theory of Plasticity, Clarendon Press, Oxford, 1950.
- 29. I. M. Gelfand, Lectures on Linear Algebra [in Russian], Nayka, Moskva, 1971.
- 30. J. Rychlewski, About quadratic limit criteria of stressed state [in Russian] – manuscript.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0052-0005