Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper the discrete time fractional order artificial neural network is presented. This structure is proposed for simulating the dynamics of non-linear fractional order systems. In the second part of this paper several numerical examples are shown. The final part of the paper presents the discussion on the use of fractional or integer discrete time neural network for modelling and simulating fractional order non-linear systems. The simulation results show the advantages of the proposed solution over the classical (integer) neural network approach to modelling of non-linear fractional order systems.
Czasopismo
Rocznik
Tom
Strony
128--132
Opis fizyczny
Bibliogr. 10 poz., Wykr.
Twórcy
Bibliografia
- 1. Benoit-Marand F., Signac L., Poinot T., Trigeassou J.C. (2006), Identification of non linear fractional systems using continuous time neural networks, Proceedings of 2nd IFAC Workshop on Fractional Differentiation and its Applications, IFAC FDA’06.
- 2. Boroomand A., Menhaj M. B. (2009), Fractional order hopfield neural networks, Lecture Notes in Computer Science: Advances in Neuro-Information Processing, 5506, 883–8902.
- 3. Hunt K., Irwin G. Warwick K. (1995), Neural Network Engineering in Dynamic Control Systems, Springer.
- 4. Kalkkuhl J., Hunt K., Zbikowski R., Dzieliński A. (1997), Applications of neural adaptive control technology, World Scientific.
- 5. Nørgaard M., Ravn O., Poulsen N., Hansen L. (2000), Neural Networks for Modelling and Control of Dynamic Systems, Springer.
- 6. Oldham K., Spanier J. (1974), The Fractional Calculus. Academic Press, New York.
- 7. Podlubny I. (1999), Fractional Differential Equations, Academic Press, San Diego.
- 8. Sierociuk D. (2005). Fractional Order Discrete State-Space System Simulink Toolkit User Guide http://www.ee.pw.edu.pl/˜dsieroci/fsst/fsst.htm
- 9. Sierociuk D., Dzieliński A. (2006), Fractional Kalman filter algorithm for states, parameters and order of fractional system estimation, International Journal of Applied Mathematics and Computer Science, 16(1), 129–140.
- 10. Żbikowski R,. Hunt K. (1996), Neural adaptive control technology, World Scientific.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0051-0031