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Abstract: The realization problem for single-input single-output 2D positive fractional systems with different orders is for-
mulated and a method based on the state variable diagram for finding a positive realization of a given proper transfer function 
is proposed. Sufficient conditions for the existence of a positive realization of this class of 2D linear systems are established. 
A procedure for computation of a positive realization is proposed and illustrated by a numerical example. 

 

1. INTRODUCTION 

In positive systems inputs, state variables and outputs 
take only non-negative values. Examples of positive sys-
tems are industrial processes involving chemical reactors, 
heat exchangers and distillation columns, storage systems, 
compartmental systems, water and atmospheric pollution 
models. A variety of models having positive linear systems 
behavior can be found in engineering, management science, 
economics, social sciences, biology and medicine, etc. 

Positive linear systems are defined on cones and not 
on linear spaces. Therefore, the theory of positive systems 
is more complicated and less advanced. An overview of 
state of art in positive systems theory is given in the mono-
graphs (Farina and Rinaldi, 2000; Kaczorek, 2002). The 
realization problem for positive discrete-time and conti-
nuous-time systems without and with delays was consi-
dered in Benvenuti and Farina (2004), Farina and Rinaldi 
(2000) and Kaczorek (2006a, 2006b, 2004, 2005). A new 
class of positive 2D hybrid linear system has been intro-
duced in Kaczorek (2007), and the realization problem for 
this class of systems has been considered in Kaczorek 
(2008c). 

The first definition of the fractional derivative was in-
troduced by Liouville and Riemann at the end of the 19th 
century (Nishimoto, 1984; Oldham and Spanier, 1974). 
This idea has been used by engineers for modeling different 
process (Engheta, 1997; Ferreira and Machado, 2003; 
Klamka, 2005; Ostalczyk, 2000; Oustaloup, 1993). Mathe-
matical fundamentals of fractional calculus are given in the 
monographs (Miller and Ross, 1993; Nishimoto, 1984; 
Oldham and Spanier, 1974; Ortigueira, 1997; Podlubny, 
1999). The fractional order controllers have been developed 
in (Ostalczyk, 2000; Podlubny et al., 1997). A generaliza-
tion of the Kalman filter for fractional order systems has 
been proposed in Zaborowsky and Meylaov (2001). A new 
class of positive fractional 2D hybrid linear system has 
been introduced in Kaczorek (2008e) and positive fractional 
2D linear systems described by the Roesser model in Ro-
gowski and Kaczorek (2010). The realization problem 
for positive fractional systems was considered in Kaczorek 
(2008b, 2008d, 2011) and Sajewski (2010). 

The main purpose of this paper is to present a method 
for computation of a positive realization of SISO 2D differ-
ent orders fractional systems with given proper transfer 
function using the state variable diagram method. Sufficient 
conditions for the existence of a positive realization of this 
class of systems will be established and a procedure for 
computation of a positive realization will be proposed. 

The paper is organized as follows. In section 2 basic de-
finition and theorem concerning positive 2D different or-
ders fractional systems are recalled. Also in this section 
using the zet transform the transfer matrix (function) of the 
different orders fractional systems is derived and the posi-
tive realization problem is formulated. Main result is given 
in section 3 where solution to the realization problem for 
given transfer function of the 2D different orders fractional 
discrete-time linear systems is given. In the same section 
the sufficient conditions for the positive realization are 
derived and the procedure for computation of the positive 
realization is proposed. Concluding remarks are given 
in section 4. 

The following notation will be used: ℜ – the set of real 
numbers, ℜ�×� – the set of � ×� real matrices, ℜ�

�×� – 
the set of � ×� matrices with nonnegative entries and 
ℜ�

� = ℜ�
�×�, �� – the � × � identity matrix, Z[����] – zet 

transform of the discrete-time function  �(�). 

2. PRELIMINARIES AND PROBLEM 
FORMULATION 

Consider a 2D system with different fractional orders 
described by the equations  

)()()()1( 12121111 kuBkxAkxAkx ++=+∆α                (2.1a) 

)()()()1( 22221212 kuBkxAkxAkx ++=+∆β              (2.1b) 

)()()()( 2211 kDukxCkxCky ++= , +∈Zk          (2.1c) 

where ��(�) ∈ ℜ��, ��(�) ∈ ℜ�� 	are state vectors 
and 
(�) ∈ ℜ� is input vector  �(�) ∈ ℜ� is output vector 
and ��� ∈ ℜ��×�� , 
� ∈ ℜ��×�, �� ∈ ℜ	×��, �, � = 1,2; 
� ∈ ℜ�×�. 
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The fractional difference of � ∈ ℜ order is defined by 
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Using (2.2a) we can write the equation (2.1a) and (2.1b) 
in the following form 
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Definition 2.1. The fractional system (2.1) is called positive 
if and only if ��(�) ∈ ℜ��, ��(�) ∈ ℜ�� and �(�) ∈ ℜ�

� ,  
� ∈ �� for any initial conditions ���0� = ��
 ∈ 	ℜ�

��, 
���0� = ��
 ∈ 	ℜ�

��, and all input sequences 
(�) ∈ ℜ�,  
� ∈ �� = �0, 1, … �. 
Theorem 2.1. (Kaczorek, 2011) The fractional discrete-
time linear system (2.1) with 0 < � < 1, 0 < � < 1 
is positive if and only if 
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Proof is given in Kaczorek (2011). 
Substituting (2.2a) into (2.1a) and (2.1b) we obtain  
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(2.6a) 

Performing the zet transform with zero initial conditions 
we have 
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(2.7) 
where ���� = �[����], ���� = Z [
���], ���� = Z [����]. 

The equations (2.7) can be written in the matrix form 
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where 
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The transfer matrix of the system (2.1) is given by  
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(2.10) 
In this case the transfer matrix is the function of the op-

erators �� = � − ��, �� = � − �� and for single-input 
single-output (shortly SISO) systems it has the following 
form 
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for known �,�. 
Definition 2.2. The matrices (2.5) are called the positive 
realization of the transfer matrix �(�) if they satisfy the 
equality (2.10).  

The realization problem can be stated as follows. 
Given a proper rational matrix �(��,	��) ∈

ℜ�×�(��,	��)	and fractional orders �,�, find its positive 
realization (2.5), where ℜ�×�(��,	��)	 is the set of � ×� 
rational matrices in �� and ��. 

3. PROBLEM SOLUTION FOR SISO SYSTEMS 

The essence of proposed method for solving of the rea-
lization problem for positive linear systems with different 
fractional orders will be presented on single-input single-
output system. It will be shown that state variable diagram 
method previously used for standard discrete-time systems 
and 2D hybrid systems (Kaczorek, 2002, 2008c) is also 
valid for fractional order discrete-time systems. 

In standard (nonfractional) discrete-time systems  
it is well-known that 

)()]([)]1([ zzXkxzkx =⋅=+ ZZ                   (3.1a) 

and 
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Fig. 3.1. State variable diagram for 2D fractional different orders system 

 
Fig. 3.2. State variable diagram for 2D fractional different orders transfer function (3.14) 

Therefore, to draw the state variable diagram for stan-
dard discrete-time linear systems (Kaczorek, 2002) we use 
the of delay element 1/�. 

By similarity, for the fractional discrete-time linear sys-
tems we have 
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and to draw the state variable diagram we have to use the 

fractional of delay elements 
�

��
= ��

�� and  
�

��
= ��

��. 

Consider a 2D different orders fractional discrete-time 
linear system described by the transfer function (2.11). 
Multiplying the numerator and denominator of transfer 
function (2.11) by ��

�����

��� we obtain 
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Following Kaczorek (2002, 2008c) we define 
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and from (3.3) we have 
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Using (3.5) we may draw the state variable diagram 
shown in Fig. 3.1. 

As a state variable we choose the outputs of fractional 
(order α) of delay elements (��,����, ��,	���, … , ��,�����) 
and fractional (order β) of delay elements 
(�	,����, �	,	���, … , �	,	�����). Using state variable dia-
gram (Fig. 3.1) we can write the following discrete-time 
different orders fractional equations 
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where  
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and substituting (3.7) into (3.6) we can write the equations 
(3.6) in the form 
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and 
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(3.11) 
where 

jnnijiji aaaa ,,,, 12
+= , jnnijiji babb ,,,, 12

+=  for 

1,...,1,0 1 −= ni ; 1,...,1,0 2 −= nj .                (3.12) 

Taking under consideration that ���=��� + ����, 
���=��� + ���� the following theorem has been proved. 
Theorem 3.1. There exists a positive realization (2.5) of the 
2D different orders fractional system (2.1) with 0 < � < 1, 
0 < � < 1 if all coefficients of the numerator and denomi-
nator of the transfer function �(��,	��) are nonnegative. 

If the assumptions of Theorem 3.1 are satisfied then 
a positive realization (2.5) of (2.11) can be found by the use 
of the following procedure. 
Procedure 3.1.  
Step 1. Write the transfer function �(��,	��) in the 

form (3.3) and the equations (3.5). 
Step 2. Using (3.5) draw the state variable diagram 

shown in Fig. 3.1.  
Step 3. Choose the state variables and write equations 

(3.4). 
Step 4. Using (3.10) to (3.12) find the realization (3.10). 
Step 5. Knowing fractional orders �, � and using (2.4) 

to matrices (3.10) compute the desired positive 
realization of the transfer function (2.11). 

Example 3.1. Find a positive realization (2.5) of the proper 
transfer function where � = 	� = 0,5. 
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In this case �� = 2  and �� = 1  . 
Using Procedure 3.1 we obtain the following. 

Step 1. Multiplying the nominator and denominator 
of Transfer function (3.13) by ��

����
�� we obtain 
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Step 2. State variable diagram has the form shown  
in Fig. 3.2 

Step 3. Using state variable diagram we can write the fol-
lowing different orders fractional equations                         
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Step 4. Defining state vectors 
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we can write the equations (3.16) in the form 
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Step 5. Knowing that 5.0== βα  and using (2.4) we have 
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The conditions of Theorem 2.1 are satisfied and ob-
tained realization (3.19) with (3.20) is positive. 

4. CONCLUDING REMARKS 

A method for computation of a positive realization 
of a given proper transfer matrix of 2D different orders 
fractional discrete-time linear systems has been proposed. 
Sufficient conditions for the existence of a positive realiza-
tion of this class of systems have been established. A pro-
cedure for computation of a positive realization has been 
proposed. The effectiveness of the procedure has been illu-
strated by a numerical example. In  general  case  the  pro-
posed  procedure  does  not  provide a minimal  realization 
of a given  transfer  matrix. An open problem is formulation 
of the necessary and sufficient conditions for the existence 
of positive minimal realizations for 2D fractional systems 
in the general case as well as connection between minimal 
realization and controllability (observability) of this class 
of systems. 
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