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Abstract: The paper presents the problem of designing of a fractional order controller satisfying  the conditions of gain and 
phase margins of the closed-loop system with time-delay inertial plant. The transfer function of the controller follows directly 
from the use of Bode's ideal transfer function as a reference transfer function for the open loop system. Using the classical D-
partition method and the gain-phase margin tester, a simple computational method for determining stability regions in the 
controller parameters plane is given. An efficient analytical procedure to obtain controller parameter values for specified gain 
and phase margin requirements is also given. The considerations are illustrated by numerical examples computed 
in MATLAB/Simulink. 

 

1. INTRODUCTION 

In recent years considerable attention has been paid 
to fractional calculus and its application in many areas 
in science and engineering (see, e.g. (Das, 2008; Kaczorek, 
2011; Kilbas et al., 2006; Ostalczyk, 2008)). 

In control system fractional order controllers are used to 
improve the performance of the feedback control loop. One 
of the most developed approaches to design robust 
and fractional order controllers is CRONE control metho-
dology, French acronym of ”Commande Robuste d’Ordre 
Non Entier” (non-integer order robust control) (Oustaloup 
1991, 1995, 1999). 

The fractional PID controllers, namely PIλDµ control-
lers, including an integrator of λ order and a differentiator 
of µ order were proposed in (Podlubny, 1994, 1999). Sev-
eral design methods of tuning the PIλDµ  controllers were 
presented in (Monje et al., 2004; Valerio, 2005; Valerio and 
Costa, 2006). These methods are based on the mathematical 
description of the process. The first order-plant with time 
delay is the most frequently used model for tuning fraction-
al and integral controllers (O’Dwyer, 2003). 

The asymptotic stability is the basic requirement 
of a closed-loop system. Some methods for determining the 
asymptotic stability regions in the controller parameter 
space were proposed in (Hamamci, 2007; Ruszewski, 
2008). Gain and phase margins are measures of relative 
stability for a feedback system, therefore the synthesis 
of control systems is very often based on them. In typical 
control systems the phase margin is from 30° to 60° whe-
reas the gain margin is from 5dB to 10dB. In paper (Rus-
zewski, 2010) a simple method of determining the stability 
region (satisfying the conditions of gain and phase margins) 
in the parameter space of a fractional-order inertial plant  
with time delay and a fractional-order PI controller 
was given. 

In this paper the methods for tuning a fractional order 
controller satisfying the conditions of gain and phase mar-
gins are given. The transfer function of the controller fol-
lows from the use of Bode's ideal transfer function 
as a reference transfer function for the open loop system 
(Barbosa et al., 2004; Boudjehem et al., 2008; Busłowicz 
and Nartowicz, 2009; Skogestad, 2001; Nartowicz, 2010). 
Using the D-partition method a simple and efficient compu-
tational method for determining stability regions in the 
controller parameters space is given. Moreover analytical 
forms directly expressing the controller parameters 
for specified gain and phase margin requirements are de-
termined. 

2. PROBLEM FORMULATION 

Consider the feedback control system shown in Fig. 1. 
The main path of the control system includes the gain-phase 
margin tester Aexp(−jφ), where A and φ are gain margin and 
phase margin respectively. This tester does not exist in the 
real control system, it is only used for tuning the controller. 
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Fig. 1. Feedback control system structure  

The process to be controlled is described by an inertial 
plant with time delay 
 

,
1

)( she
sT

k
sG −

+
=  (1) 

 



Andrzej Ruszewski, Tomasz Nartowicz 
Stabilization of Inertial Plant with Time Delay Using Fractional Order Controller 

 118

where k, T, h are positive real numbers. 
The transfer function of controller C(s) directly follows 

from the use of Bode's ideal transfer function 
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as a reference transfer function of the open loop system, 
where �

�
 is the gain crossover frequency (|�(��

�
)| = 1)	 

and β is the fractional order. Transfer function (2) describes 
the fractional derivative plant for β < 0 and the fractional 
integral plant for β > 0. The open loop system with transfer 
function (2) has a constant phase margin of the value 
φm = (1 − 0.5β)π. Hence, such a system is insensitive 
to gain variation in the open loop system. Detailed analysis 
(including time domain) of the system considered is pre-
sented, for instance, in (Barbosa et al., 2004). 

In order to obtain the transfer function of the open loop 
system  in the form of transfer function (2), with expected 
time delay, we simplify the plant transfer function 
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Then the transfer function of the controller must have 
the form 
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where α is a positive real number. We will assume α > 1. 
The characteristic function of the closed-loop system 

with simplified transfer function (3), transfer function 
of controller (4) and gain-phase tester is given by 
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The closed-loop system in Fig. 1 is said to be bounded-
input bounded-output stable if and only if all the zeros 
o characteristic function (5) have negative real parts. 
It is noted that (5) is the fractional order quasi-polynomial 
which has an infinite number of zeros. This makes the prob-
lem of analysing the stability of the closed-loop system 
difficult. There is no general algebraic methods available 
in the literature for the stability test of fractional order qua-
si-polynomials. The next problem of closed-loop system 
synthesis is how to choose such a fractional order α of the 
controller that the closed-loop system will be stable 
and characterized by specified gain and phase margins. 

The aim of the paper is to propose tuning methods based 
on gain and phase margin specifications. The first one is to 
give the method for determining the stability region in the 
parameter plane (α, kc). The second is to give a simple 
analytical formula to obtain the controller parameter values 
for specified gain and phase margin requirements. 

3. MAIN RESULT 

By using the D-partition method (Gryazina, 2004) 
the stability region in the parameter plane (α, kc) can be 
determined and the parameters can be specified. The plane 
(α, kc) is decomposed by the boundaries of the D-partition 

into finite number regions D(k). Any point in D(k) corres-
ponds to such values of kc and α that quasi-polynomial (5) 
has exactly k zeros with positive real parts. The region 
D(0), if it exists, is the stability region of quasi-polynomial 
(5). The D-partition boundaries are curves on which each 
point corresponds to quasi-polynomial (5) having zeros 
on the imaginary axis. It may be the real zero boundary 
or the complex zero boundary. It is easy to see that quasi-
polynomial (5) has zero s = 0 if kc = 0 (the real zero boun-
dary). The complex zero boundary corresponds to the pure 
imaginary zeros of (5). We obtain this boundary by solving 
the equation 
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which we obtain by substituting s = jω in quasi-polynomial 
(5) and equating to 0. The term of jα which is required 
for equation (6) can be expressed by 
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Using (7) equation (6) takes the form 
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Complex equation (8) can be rewritten as a set of real 
equations in the form 
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Finally, by solving equations (9) and (10) we get 
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Equations (11) and (12) determine the complex zero 
boundary as a function of ω. The real zero boundary 
and the complex zero boundary for ω ≥ 0 decompose plane 
(α, kc) into regions D(k). The stability region D(0) is chosen 
by testing an arbitrary point from each region and checking 
the stability of quasi-polynomial (5) using the methods 
proposed in (Busłowicz, 2008). In this paper only the stabil-
ity region D(0) in the parameter plane of quasi-polynomial 
(5) is presented. 

For A = 1 and φ = 0 in (11) and (12) the stability boun-
daries are calculated. To determine the complex zero boun-
dary for a given value of gain margin A of the control sys-
tem we should set φ = 0 in (11) and (12). On the other hand 
by setting A = 1 in (12), we can obtain the boundary 
for a given phase margin φ. 

The complex zero boundary (11) and (12) is determined 
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for parameter ω ≥ 0. The complex zero boundary 
for a given value of gain margin A begins at the point α = 2, 
kc = 0 which we obtain by substituting ω = 0 in (11) 
and (12). However, the complex zero boundary for 
the given phase margin φ starts at the point α = 2(π − φ)/π, 
kc = 0. If ω →∞ plot of the complex zero boundary tends 
towards kc -axis. 
Example 1. Consider the feedback control system shown 
in Fig. 1. in which the process to be controlled is described 
by transfer function 
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On computing by the proposed method complex zero 
boundaries (11) and (12) we obtain the stability regions 
in controller parameter plane (α, kc). 

Fig. 2 shows boundaries in controller parameter plane 
(α, kc) for gain margin A = 1 and a few values of phase 
margin φ. The stability regions lie between line kc = 0 (the 
real zero boundary) and the curve assigned to specified 
phase margin φ (the complex zero boundary).  

 
Fig. 2. Stability regions of quasi-polynomial (5)  

  for A = 1 and different values of φ 

 
Fig. 3. Stability regions of quasi-polynomial (5)  

  for φ = 0 and different values of A 

On choosing any point from the stability region we ob-
tain the controller parameter values provided the phase 
margin of this system not less than specified for drawing 
the complex boundary. For example, any point from the 
region limited by the line kc = 0 and the curve correspond-

ing to φ = 60° provides a phase margin of this system not 
less than 60°. From Fig.2 we see that the increasing value 
of φ results in the disappearance of the stability region. 

The stability regions of quasi-polynomial (5) for phase 
margin φ = 0 and a few values of gain margin A are shown 
in Fig.3. We see that increasing value of A results in the 
disappearance of the stability region. On choosing any point 
from the stability region we obtain the controller parameter 
values provided that the gain margin of this system is not 
less than specified for drawing the complex boundary. For 
example a choosing point between kc = 0 and the complex 
boundary for A = 4 we obtain the controller parameters 
satisfying a gain margin of not less  than 4. 

The controller parameters and stability margins of the 
control system for all points marked in Fig. 2 and Fig. 3 
are listed in Tab. 1. It is shown that the stability margin 
values are larger than specified for drawing the complex 
boundaries of the stability regions. Gain and phase margins 
of the control system are calculated for transfer function 
(1). 

Tab. 1. Gain and phase margins 

Point Controller parameters Gain margin Phase margin 

a α = 1.1,  kc = 2 7.13 17.06 dB 107.36° 

b α = 1.1,  kc = 4 3.56 11.64 dB 74.38° 

c α = 1.1,  kc = 6 2.38 7.52 dB 55.51° 

d α = 1.1,  kc = 10 1.43 3.08 dB 26.64° 

Tab. 1 confirms the results received on the basis of the 
D-partition method showing that the points from the stabili-
ty regions satisfy the gain and phase margin requirements. 

The step responses of the control system are presented 
in Fig. 4. It can be seen that the increasing value of φ results 
in smaller oscillations. 

 
Fig. 4. Step responses of control system 

By using the stability regions we can obtain the control-
ler parameter values for specified gain and phase margins 
requirements simultaneously. For this purpose we draw 
in one plot the complex zero boundary for specified phase 
margin φ with A = 1 and the complex zero boundary 
for specified gain margin A with φ = 0. Intersection point 
of the complex zero boundaries determines the controller 
parameter values. 
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Example 2. Consider the feedback control system  
as in Example 1. Calculate the controller parameter values 
so that the control system has the gain margin A = 4 (about 
12 dB) and the phase margin φ = 55°. 

On computing the complex zero boundaries (11) 
and (12) for specified gain margin A = 4 with φ = 0 and for 
specified phase margin φ = 55° with A = 1 we obtain 
the stability regions which are shown in Fig. 5. The inter-
section point of  the complex zero boundaries is marked 
on Fig. 5 and has coordinates α = 1.1339, kc = 2.9358. 
On calculating the stability margins of control system 
for simplified transfer function (3) we obtain A = 4 
and φ = 55°. Whereas stability margins for model plant (1) 
are A = 4.4 and φ = 80° because of simplification (3). Fig. 6 
shows the Bode plot with the gain and phase margins 
marked for controller parameters α = 1.1339, kc = 2.9358. 

 
Fig. 5. Stability regions of quasi-polynomial (5)  

   for  A = 1, φ = 55° and A = 4, φ = 0 

 
Fig. 6. Bode plot with gain and phase margins 

By using expressions of the stability boundaries (11) 
and (12) we can determine analytical description for direct 
calculations of the controller parameter values for specified 
gain and phase margins requirements without drawing 
the stability region. 

To determine the complex zero boundary for a given 
value of gain margin A of the control system we set φ = 0 
in (11) and (12). On solving system of equations (11) 
and (12) for the unknown quantities of ω and kc with φ = 0 
we obtain 
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Expression (15) gives the relationship between kc and α 
for specified gain margin A. 

Similarly to determine the complex zero boundary 
for a given phase margin φ of the control system we set 
A = 1 in (12). On solving system of equations (11) and (12) 
for the unknown quantities of ω and kc with A = 1 we obtain 
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Expression (17) gives the relationship between kc and α 
for specified phase margin φ. 

Note from Fig.5 that for fixed value of α which guaran-
tees gain and phase margins requirements simultaneously 
the values of kc in the two complex boundaries are the same 
(the intersection point). Therefore the value of α which 
ensures gain and phase margins requirements can be calcu-
lated by solving following nonlinear equation 
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After simplifications equation (18) can be rewritten 
in the form 
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If we get the value of α from (19) we can calculate con-
troller gain kc from expression (15) or (17).  

From the above it can be seen that the procedure for cal-
culating parameters of controller (4) for specified gain 
and phase margins requirements is as follows: 
1. Solve the nonlinear equation (19) and determine α. 
2. Calculate controller gain kc from expression (15) or (17). 

Note that in the procedure proposed the calculation 
of the gain crossover frequency or the phase crossover fre-
quency is not necessary in contrast to methods presented 
in (Boudjehem et al., 2008; Busłowicz and Nartowicz, 
2009; Nartowicz, 2010). The advantage of the procedure 
proposed is that the controller settings are easily calculated. 
Example 3. Consider the feedback control system 
as in Example 2. Using the procedure presented calculate 
the controller parameters values so that the control system 
has gain margin A = 4 (about 12 dB) and phase margin 
φ = 55°. 
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On solving nonlinear equation (19) we have α = 1.1339. 
From (15) or (17) we calculate controller gain kc = 2.9358. 
Note that we obtain the same values of the controller para-
meter as in Example 2. 

Gain and phase margins are measures of relative stabil-
ity for a feedback system. Although the phase margin 
is used more frequently than both margins. The phase mar-
gin is closely related to transient response i.e. overshoot.  

From the above it can be seen that the procedure for cal-
culating parameters of controller (4) for specified phase 
margin requirement is as follows: 
1. Calculate the start point of the complex zero boundary 

α = 2(π − φ)/π. 
2. Choose any positive value smaller than determined α. 
3. Calculate controller gain kc from expression (17). 

In the above procedure solving nonlinear equation is not 
necessary. 

4. CONCLUSION 

In this paper the stability problem of control systems 
composed of the fractional-order controller and the inertial 
plant with time delay is examined. On the basis of the  
D-partition method analytical forms expressing the bounda-
ries of stability regions in the parameter space for specified 
gain and phase margin requirements were determined. 
When the  the stability regions are known  the tuning of the 
fractional controller can be carried out. Simple analytical 
formulas for obtaining the controller parameter values 
for specified gain and phase margins requirements were 
also given. In the method proposed the controller settings 
are easily calculated. 

The calculations and simulations were made using 
the Matlab/Simulink programme. 
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