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Abstract: The paper presents the problem of designing odetibnal order controller satisfying the condisaof gain and
phase margins of the closed-loop system with tieleydinertial plant. The transfer function of thentroller follows directly
from the use of Bode's ideal transfer function asference transfer function for the open loop systdsing the classical D-
partition method and the gain-phase margin testaimple computational method for determining $itghiegions in the
controller parameters plane is given. An efficianalytical procedure to obtain controller paramesdues for specified gain
and phase margin requirements is also given. Thesiderations are illustrated by numerical exampiesnputed

in MATLAB/Simulink.

1. INTRODUCTION

In recent years considerable attention has beed pai
to fractional calculus and its application in maayeas
in science and engineering (see, e.g. (Das, 2088zdtek,
2011; Kilbas et al., 2006; Ostalczyk, 2008)).

In control system fractional order controllers ased to
improve the performance of the feedback contropld@ne
of the most developed approaches to design robust
and fractional order controllers is CRONE contraétho-
dology, French acronym of "Commande Robuste d’'Ordre
Non Entier” (non-integer order robust control) (@sup
1991, 1995, 1999).

The fractional PID controllers, namely’BF control-
lers, including an integrator of order and a differentiator
of u order were proposed in (Podlubny, 1994, 1999)- Sev
eral design methods of tuning the™ controllers were
presented in (Monje et al., 2004; Valerio, 2005tevia and
Costa, 2006). These methods are based on the nattbaim
description of the process. The first order-plaithwime
delay is the most frequently used model for turfiagtion-
al and integral controllers (O’'Dwyer, 2003).

The asymptotic stability is the basic requirement
of a closed-loop system. Some methods for detenmitiie
asymptotic stability regions in the controller pasder
space were proposed in (Hamamci, 2007; Ruszewski,
2008). Gain and phase margins are measures ofveelat
stability for a feedback system, therefore the Ilsgsis
of control systems is very often based on themtypical
control systems the phase margin is from 30° to \GBé-
reas the gain margin is from 5dB to 10dB. In pafars-
zewski, 2010) a simple method of determining tlabitity
region (satisfying the conditions of gain and phas&gins)
in the parameter space of a fractional-order iakegiant
with time delay and a fractional-order Pl controlle
was given.

In this paper the methods for tuning a fractionaleo
controller satisfying the conditions of gain ancagé mar-
gins are given. The transfer function of the cadigrofol-
lows from the use of Bode's ideal transfer function
as a reference transfer function for the open leggtem
(Barbosa et al., 2004; Boudjehem et al., 2008; d@uisz
and Nartowicz, 2009; Skogestad, 2001; Nartowic,020
Using the D-partition method a simple and efficieainpu-
tational method for determining stability regions the
controller parameters space is given. Moreover ydioal
forms directly expressing the controller parameters
for specified gain and phase margin requiremengs dar
termined.

2. PROBLEM FORMULATION

Consider the feedback control system shown in Fig.
The main path of the control system includes thie-gaase
margin testeAexp(j @, whereA andgare gain margin and
phase margin respectively. This tester does nat @xithe
real control system, it is only used for tuning toatroller.

A\
\/

Ag'* C(s) G(s)

Fig. 1. Feedback control system structure

The process to be controlled is described by aniahe
plant with time delay

k
1+sT

G(s) = e, @)
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wherek, T, h are positive real numbers.
The transfer function of controlleZ(s) directly follows
from the use of Bode's ideal transfer function

B
K(s) =(“;°j , 2

as a reference transfer function of the open loggiem,
wherew, is the gain crossover frequentyK (jw,)| = 1)
andpis the fractional order. Transfer function (2) chéses
the fractional derivative plant fgf <0 and the fractional
integral plant for3> 0. The open loop system with transfer
function (2) has a constant phase margin of theieval
@=(1-0.59m Hence, such a system is insensitive
to gain variation in the open loop system. Detadedlysis
(including time domain) of the system consideredilis-
sented, for instance, in (Barbosa et al., 2004).

In order to obtain the transfer function of the paop
system in the form of transfer function (2), wihkpected
time delay, we simplify the plant transfer function

K_gshe K gmsn 3)
1+sT sT

Xs) =

Then the transfer function of the controller muavé
the form

C(s) = ks, (4)

whereq is a positive real number. We will assume 1.

The characteristic function of the closed-loop egst
with simplified transfer function (3), transfer fttion
of controller (4) and gain-phase tester is given by

W(s) = Akk.s' e 1% + ST, (5)

The closed-loop system in Fig. 1 is said to be bledn
input bounded-output stable if and only if all theros
o characteristic function (5) have negative reaktpa
Itis noted that (5) is the fractional order quaslynomial
which has an infinite number of zeros. This makesprob-
lem of analysing the stability of the closed-loogstem
difficult. There is no general algebraic methodsikable
in the literature for the stability test of fraat@ order qua-
si-polynomials. The next problem of closed-loop teys
synthesis is how to choose such a fractional omlef the
controller that the closed-loop system will be tdgab
and characterized by specified gain and phase nsrgi

The aim of the paper is to propose tuning methedet
on gain and phase margin specifications. The dingt is to
give the method for determining the stability regia the
parameter planea(k;). The second is to give a simple
analytical formula to obtain the controller paraenetalues
for specified gain and phase margin requirements.

3. MAIN RESULT

By using the D-partition method (Gryazina, 2004)
the stability region in the parameter plarng i) can be
determined and the parameters can be specifiedplaine
(a, k) is decomposed by the boundaries of the D-pantitio
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into finite number region®(k). Any point inD(K) corres-
ponds to such values &f and a that quasi-polynomial (5)
has exactlyk zeros with positive real parts. The region
D(0), if it exists, is the stability region of qugsblynomial
(5). The D-partition boundaries are curves on wheelch
point corresponds to quasi-polynomial (5) havingoge
on the imaginary axis. It may be the real zero lolauy
or the complex zero boundary. It is easy to seedhasi-
polynomial (5) has zere= 0 if k. = 0 (the real zero boun-
dary). The complex zero boundary corresponds t@tire
imaginary zeros of (5). We obtain this boundarysbiving
the equation

W(jw) = Akk (jo)t e 1% 140 + ot = 0, (6)

which we obtain by substituting= j win quasi-polynomial
(5) and equating to 0. The term gt which is required
for equation (6) can be expressed by

o Ty, T
i —co{azjﬂsm(azj. @)

Using (7) equation (6) takes the form

Akkat ™ CO{Z (o - 1)) — oT sin(ah + @) + o
— jAkke sin(;[(a - )) + jaT codah+¢)=0.

Complex equation (8) can be rewritten as a seeaf r
equations in the form

Akk.a ™Y CO{Z (@ —1)) - awTsinah+@)=0, 9)

- Akk.at™9 sin(g(a —1)) +aT codah + @) = 0. (10)

Finally, by solving equations (9) and (10) we get

a= 2n-ah-gq) ’
m
2(mr-ah-¢)

ke=—w 7
¢ Ak

(11)

(12)

Equations (11) and (12) determine the complex zero
boundary as a function ofu The real zero boundary
and the complex zero boundary f@= 0 decompose plane
(@, ko) into regiondD(k). The stability regiom(0) is chosen
by testing an arbitrary point from each region ahdcking
the stability of quasi-polynomial (5) using the imads
proposed in (Bustowicz, 2008). In this paper ohly stabil-
ity regionD(0) in the parameter plane of quasi-polynomial
(5) is presented.

ForA=1 andp=0 in (11) and (12) the stability boun-
daries are calculated. To determine the complex heun-
dary for a given value of gain margiof the control sys-
tem we should sgp= 0 in (11) and (12). On the other hand
by settingA=1 in (12), we can obtain the boundary
for a given phase margip

The complex zero boundary (11) and (12) is detezthin



for parameter w=0. The complex zero boundary
for a given value of gain marglkbegins at the poird = 2,
k:=0 which we obtain by substitutingp=0 in (11)
and (12). However, the complex zero boundary for
the given phase margipstarts at the pointr = 2(rt— @)/,

ke =0. If w- o plot of the complex zero boundary tends
towardsk, -axis.

Example 1. Consider the feedback control system shown
in Fig. 1. in which the process to be controllediéscribed

by transfer function

055
&) 1+62s

On computing by the proposed method complex zero
boundaries (11) and (12) we obtain the stabilityiors
in controller parameter plane,(k.).

Fig. 2 shows boundaries in controller parametengla
(a,k;) for gain marginA=1 and a few values of phase
margin @ The stability regions lie between likg= 0 (the
real zero boundary) and the curve assigned to fapeci
phase margip(the complex zero boundary).

e 10s,

(13)

20 T T T T T
I I I I I

Fig. 2. Stability regions of quasi-polynomial (5)
for A =1 and different values @f

.
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a
Fig. 3. Stability regions of quasi-polynomial (5)
for ¢= 0 and different values &f

On choosing any point from the stability region oz
tain the controller parameter values provided thaspe
margin of this system not less than specified fiawing
the complex boundary. For example, any point frdma t
region limited by the lind. = 0 and the curve correspond-
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ing to ¢= 60 provides a phase margin of this system not
less than 60 From Fig.2 we see that the increasing value
of gresults in the disappearance of the stability negio

The stability regions of quasi-polynomial (5) fongse
margin ¢= 0 and a few values of gain margirare shown
in Fig.3. We see that increasing valuefofesults in the
disappearance of the stability region. On chooaimgpoint
from the stability region we obtain the controlf@arameter
values provided that the gain margin of this systemot
less than specified for drawing the complex boupdior
example a choosing point betweley= 0 and the complex
boundary forA=4 we obtain the controller parameters
satisfying a gain margin of not less than 4.

The controller parameters and stability marginghef
control system for all points marked in Fig. 2 dfid. 3
are listed in Tab. 1. It is shown that the stapilibargin
values are larger than specified for drawing thenglex
boundaries of the stability regions. Gain and phaaegins
of the control system are calculated for transfercfion

(1).

Tab. 1. Gain and phase margins

Point | Controller parameters Gain margin Phase margi
a a=11k=2 7.13 17.06 dB|  107.36
b a=11k=4 3.56 11.64 dB| 74.38
c a=11,k=6 2.38 7.52dB 55.5T°
d a=11,k=10 143 3.08dB 26.64

Tab. 1 confirms the results received on the bakthe
D-partition method showing that the points from stabili-
ty regions satisfy the gain and phase margin requéints.
The step responses of the control system are piessen
in Fig. 4. It can be seen that the increasing vafugresults
in smaller oscillations.
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Fig. 4. Step responses of control system

By using the stability regions we can obtain thatoal-

ler parameter values for specified gain and phasegims
requirements simultaneously. For this purpose wawdr
in one plot the complex zero boundary for specifidshse
margin ¢ with A=1 and the complex zero boundary
for specified gain margi® with ¢= 0. Intersection point
of the complex zero boundaries determines the cbetr
parameter values.
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Example 2. Consider the feedback control system
as in Example 1. Calculate the controller paramesdues
so that the control system has the gain mafgind (about
12 dB) and the phase margir 55°.

On computing the complex zero boundaries (11)
and (12) for specified gain marghk= 4 with ¢= 0 and for
specified phase margip=55 with A=1 we obtain
the stability regions which are shown in Fig. 5eTihter-
section point of the complex zero boundaries iske
onFig. 5 and has coordinates=1.1339, k. =2.9358.
On calculating the stability margins of control t&ys
for simplified transfer function (3) we obtairA=4
and ¢= 55". Whereas stability margins for model plant (1)
areA = 4.4 andp= 80 because of simplification (3). Fig. 6
shows the Bode plot with the gain and phase margins
marked for controller parametess= 1.1339 k. = 2.9358.

Fig. 5. Stability regions of quasi-polynomial (5)
for A=1,p=55°andA=4,9=0

A =12.85dB (at 0.147 rad/s), = 80.22 ° (at0.037 rad/s)

Magnitude (dB)

90+

-180F

-2701

Phase (deg)

-360
10”

10°

Frequency (rad/s)
Fig. 6. Bode plot with gain and phase margins

By using expressions of the stability boundaries) (1
and (12) we can determine analytical descriptiandicect
calculations of the controller parameter valuessfoecified
gain and phase margins requirements without drawing
the stability region.
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To determine the complex zero boundary for a given
value of gain margim of the control system we set= 0
in (11) and (12). On solving system of equationg) (1
and (12) for the unknown quantities @fandk; with ¢=0
we obtain

w= n2-a) '
2h
T ( n2-a) )a
Ak 2h '
Expression(15) gives the relationship betweknand o
for specified gain margiA.

Similarly to determine the complex zero boundary
for a given phase margip of the control system we set
A=1in (12). On solving system of equations (119 §12)
for the unknown quantities @dandk, with A = 1 we obtain

(14)

(15)

C

w:n(Z—a)—Zqz’ (16)
2h

_T(n@-a)-2¢\"

= T(me=a-20) an)

Expression (17) gives the relationship betwkeand a
for specified phase margin

Note from Fig.5 that for fixed value @ which guaran-
tees gain and phase margins requirements simuliaheo
the values ok; in the two complex boundaries are the same
(the intersection point). Therefore the value afwhich
ensures gain and phase margins requirements cealhe
lated by solving following nonlinear equation

J=id

After simplifications equation (18) can be rewrnitte
in the form
nm2-a)

m2-a)-2¢

If we get the value ofr from (19) we can calculate con-
troller gaink. from expression (15) or (17).

From the above it can be seen that the procedueafo
culating parameters of controller (4) for specifigdin
and phase margins requirements is as follows:

1. Solve the nonlinear equation (19) and deternaine
2. Calculate controller gaik. from expression (15) or (17).

Note that in the procedure proposed the calculation
of the gain crossover frequency or the phase cvessoe-
guency is not necessary in contrast to methodsepted
in (Boudjehem et al., 2008; Bustowicz and Nartowicz
2009; Nartowicz, 2010). The advantage of the proced
proposed is that the controller settings are easilyulated.
Example 3. Consider the feedback control system
as in Example 2. Using the procedure presenteduleséc
the controller parameters values so that the cbeyrstem
has gain margim =4 (about 12 dB) and phase margin
@=55.

T
Ak

T

” (18)

( m2-a)

mR-a)- 2(0)”
2h '

2h

(19)



On solving nonlinear equation (19) we have 1.1339.
From (15) or (17) we calculate controller g&in= 2.9358.
Note that we obtain the same values of the coetrglara-
meter as in Example 2.

Gain and phase margins are measures of relatibé-sta
ity for a feedback system. Although the phase nmargi
is used more frequently than both margins. The gmaar-
gin is closely related to transient response wershoot.

From the above it can be seen that the proceduafo
culating parameters of controller (4) for specifipdase
margin requirement is as follows:

1. Calculate the start point of the complex zero baupd
a=2(r- gl

2. Choose any positive value smaller than determimed

3. Calculate controller gaik. from expression (17).

In the above procedure solving nonlinear equatomoit
necessary.

4. CONCLUSION

In this paper the stability problem of control gyet
composed of the fractional-order controller and itrertial
plant with time delay is examined. On the basistlof
D-partition method analytical forms expressing bleeinda-
ries of stability regions in the parameter spacesfecified

gain and phase margin requirements were determined.

When the the stability regions are known thergrof the
fractional controller can be carried out. Simplealgtical
formulas for obtaining the controller parameter uesl
for specified gain and phase margins requiremerdse w
also given. In the method proposed the controlédtirgys
are easily calculated.

The calculations and simulations were made using
the Matlab/Simulink programme.
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