Krzysztof Rogowski

General Response Formula for Fractional 2D Continuous-Time Linear Systems Described by the Roesser Model

GENERAL RESPONSE FORMULA FOR FRACTIONAL
2D CONTINUOUS-TIME LINEAR SYSTEMS
DESCRIBED BY THE ROESSER MODEL

Krzysztof ROGOWSKI*

*Phd student, Faculty of Electrical Engineering,Ha#ok University of Technology, Wiejska 45 D, 1513Bialystok

k.rogowski@doktoranci.pb.edu.pl

Abstract: A new class of fractional two-dimensional (2D) doobus-time linear systems is introduced. The ganes-
sponse formula for the system is derived using d_-2place transform. It is shown that the classCayley-Hamilton theo-
rem is valid for such class of systems. Usefulrdgbe general response formula to obtain a salutibthe system is dis-

cussed and illustrated by a numerical example.

1. INTRODUCTION

The most popular models of two-dimensional (2D) lin
ear system are the ones introduced by Roesser )} 1035
nasini and Marchesini (1976, 1978) and Kurek (1985)
An overview of 2D linear systems theory is giver(Bose,
1982, 1985; Kaczorek, 1985, 2001; Gatkowski, 2004
rina and Rinaldi, 2000).

Mathematical fundamentals of fractional calculugl an
its applications are given in the monographs (Ohalleand
Spanier, 1974; Nashimoto, 1984; Miller and Ros9319
Podlubny, 1999, Ostalczyk, 2008).

The notion of fractional 2D discrete-time lineastgms

was introduced by Kaczorek (2008a) and extended F(x):J.e_

in (Kaczorek, 2008b, 2009, Kaczorek and Rogowsbd,@
Rogowski, 2011). An overview in state of the artlb

Definition 1. The a; order partial derivative of a 2D conti-
nuous functiorf (t,, t,) is given by the formula

a 0
D, f (tw.t2) o f(tto)
1

and 2D fractional systems is given in the monograph for x > 0is the gamma function and

(Kaczorek, 2011).

In this paper a new 2D continuous-time fractional
Roesser type model will be introduced. The geneeal
sponse formula for the system will be derived ushey2D
Laplace transform method (Section 2). Moreoverdhassi-
cal Cayley-Hamilton theorem will be extended tacfianal
2D continuous-time systems in Section 3. 3ection 4
usefulness of the general response formula tormbtai
the solution of the system will be discussed aludtilated
by a numerical example. Concluding remarks are rgive
in Section 5.

To the best knowledge of the author 2D continudms-t
fractional linear systems have not been considgeéd

2. FRACTIONAL 2D STATE EQUATIONS
AND THEIR SOLUTION

Let R™™ be the set ofn xm real matrices and
R™: = R™1. The set of nonnegative integers will be de-
noted byZ, and then x n identity matrix will be denoted
by I,.

We introduce the following definition of fractionphr-
tial derivative of a 2D continuous functid¢ift,, t,) of two
independent variables, t, = 0.
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where i = 1,2, Ni -1< a; < N,: EN = {1,2, }, a; ER
is the order of fractional partial derivative,
RO )
M f (7t
M for i=1
N ar
CRICORS BV ©
I t 1 .
# for i=2.
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Consider the fractional 2D continuous-time systeea d

scribed by the state equations
h
th,t
Xv ( 1 2)] +[:1}u(t1,tz),
X' (tg,to) 2

|

DX (t.tp) | {Aﬂ

DX (ttp) | LA
(4a)
h
y(tl,tz):C[XV(tl't )]+Du(t1, ). (4b)
(t1.t2)

where x"(t;,t,) € R™, x"(t,t;) ER™ (n=n, + n,)

are the horizontal and vertical state vectors, ectsgely,
u(ty, t,) € R™ is the input vectory(t,, t,) € RP is the out-
put vector andA4,; € R™*!, B, € R™"*™ for k,I=1,2;

C € RP*™; D € RP*™,
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The boundary conditions for (4) are given in therfo where
h(k)(Ot): w (5a) In for i=0,j=0
% "2 ot o Tij =<Twoli-1j *Tofli j-1 for i+j>0,(i,jOz,) (9)
0 (zero matrix) for i< Oand/gr< O
for k=0,1,..,N; — 1 andt, = 0,
( ) and
o' %Y (ty,t,
() (1,0 =| 12 (o) A11 Pp| o [0 0O 10
ath _ 10~ v To1= : (10)
t,=0 0 A21 A22
for [=0,1,..,N; —1andt; 20. o Proof. Let F(p,t,) (F(ty,s)) be the Laplace transform
In the following theorem the Riemman-Liouville fouta of a 2D continuous functiofi(t,, t,) with respect ta; (t,)
of fractional integration of a functiofi(t) will be used (Pod- defined by
lubny, 1999)
t _ F p,tz :[’t f t11t2 f t11t2 pldtl
=1 [t (r)(t-1)"ar, 6) (p2) =4, [ f(tut2)}= ({

(@)g w (11)
wherea > 0 is the fractional (real) order of the integration. [ (t,5) =14, [f(tuto)]= I f(tyt)e S2at 2]-
Similarly, we may define the 2D fractional integoéffunction 0
ft1t7) The 2D Laplace transform of(t;,t,) will be denoted

a.p _al\ B 180 a by F (p, s) and defined by
i | (ti,tp) = Iy [Itzf (tl,tz)] = |t2[|tlf (tl,tz)]
1 F(p.s)= £, {6, [ (tto) ]} = 4, {4,[f ()]
r(a)r(B) =L, [ (tto) ] (12)

O = 5"
o

(b =12)" " (to=12)7 7 f (17 )T gy =[] 1 (ttp) e P S2atydt

% Applying (12) to (1) fori =1 and taking into account that
wherea, 8 > 0. . . _ (Kaczorek, 2011)
Theorem 1.The solution to the equation (4a) with the boun-
d diti 5)is givenb Ma+1
ary conditions (5) is given by y [tf]= E;,ﬂ) 13)
L) g [§ 47 e (o)
|
R == Sl (k+iag) 0 "
N —k ¢ (k-1
REARCECN LtlH )(tl)}=pNF(p,t2)—Z N (oty) 4
0 |tz u(ty.tz) k=1
for N=0,1,..; we obtain
N, k+|0/1 h(k—l) ot 1
+ZTIO Z ( '2) "
S Cl@r (i) o Lyt DT (o) | = £, { £, DT (tato)
Bl (i+1)a t (Ny)
+[O 1u (to,t } _ 1 . j o () .
F(N =) 2| 7 g (- )N
+§:§:T N2 t|+102_l |a'l (I l 1 (15)
| \Y — .=
= i |+ jas) X, (t,,0) :mﬁtz{ﬁtl[t{\h @ 1}41[ft1(N1)(r1)]}
ia; ]+1
+|: i| tl 3-2 (tl’tZ)} = palF p S z pal 0 S)
o N, t|2+102‘1 0 H
+3 1o _ |1 where
jZ:;J J Er(|+1”2) Xtvz( ) (1,0) ()
k) 0" f tl,tz
07 (o1 R (08)= 1, 1| T2 (16
+[BJ |t(21+ )azu(tl,tz)}, t, 2 otk o

(8) for k=0,1,...
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Similarly, for i =2 in (1) we have

ﬁttz[ " (tltz)} s“2F(p,s) zs"z g' l)(p,O),

=1

7
where
o' f (ty,
) (p.0)=1, {—(tll IZ)] (18)
oty =0
for1=0,1,..

Taking into account (15) and (17) we obtain the L2p-
lace transform of the state equation (4a)

N
p X" (p,s) —ki p”ka:(k‘” (0.5)
=1

s72X"(p,s) - Z '™ (p,0) (19)

s 22}[§v§§;§;]+[:ju<p,s>.

Premultiplying (19) by the matrix

blockdiag{ p iy 5 nJ

we obtain
xh p,s _
[XVEp s)]:G R
Ny
3 p_kXtT(k_l) (0.9) g, (20)
X k&l +{ a, ]U(p,S),
ot g | 575
=1
where
. —p @ ]
G(p.s)= n P A1 P A ' 1)
—sT Ay 1y, —8T2 A
Let
G'l(p,s)=z(;zo ip Hagias (22)
i=0j=
From

6 (ps)G(p8) =G(ps) G ()=

using (21) and (22), it follows that

> Z{Tij ~Tioli-1j —Todi ,j—}p_ials_ja2 =1y (23)
=0 j=0

whereT;y and Ty, are defined by (10).

Comparing the coefficients at the same powens afds
we obtain (9).
Substituting the expansion (22) into (20) we obtain

Xh(p,s) w o p_(iﬂ)als_jazB_L
= Tij L U(p,
[XV(p,s)] i=0 jZ::0 : {[ p"als_(l+1)”282 (p S)

Z p —k- 'als‘lazx h(k-1) (O S) (24)
+ k =1 ’

zp 'alsl Jazx (l 1)(p o)

1=1

Taking into account (Kaczorek, 2011)
MR (p) =181 (1), (25)

wherea > 0 and£~! denotes the inverse Laplace transform,
it is easy to show that

ol [P s R (ps) | =171 (1), (26)
wherea,, a, > 0.

Applying the inverse 2D Laplace transform to (24)
and taking into account (26) we obtain the forng8)a

3. EXTENSION OF CAYLEY-HAMILTON
THEOREM

Theorem 2.Let

I, =P A —p MA,

detG(p.s) = . .
- 2A21 |n2 —-S 2A2 (27)
& & -kay —la
= z zanl—k,nz—l p 1S 2
k=01=0

be the characteristic polynomial of the system [®en
the transition matriceg; satisfy the equality

n Ny
> > a Teem i +m, =0, (28)
k=01=0

wherem;,m, = 0,1, ....
Proof. From the definition of the inverse matrix, as wasl
(22) and (27), we have

; LA —kay —las
AdiG(p,s)= (ZZ% k-1 P 1S ]X

) i
=2

k=01=0i

M
Ms

TPl J”z} 29)

1
o

0

z Ay Tk, j+ P (I+nl)a15_(j+n2)az.

]
Ny

Ms



where AdjG( p,s) denotes the adjoint matrix @ (p, s).

Comparing the coefficients at the same powerns afds
for i = 0 andj = Owe obtain (28) sincddjG(p, s) is a poly-
nomial matrix of the form

h n . .
AdiG(p.s)=> ZZ: Dy p sz,
i=0=0
i,j#£n.n,

(30)

where D;; € R™™ are some real matrices.

Theorem 2 is an extension of the well-known clasic
Cayley-Hamilton theorem to fractional 2D continudinse
systems.

4. NUMERICAL EXAMPLE

Example 1.Consider fractional 2D system (4) with = 0,7,

a, = 0,9 and matrices

A1 Ap| |09 07 By|_

Por Ag _{ 0 ‘0-3} B2 _[ﬂ
D=[0].

s 3}

(31)

h
LN

Fig. 1. State variable" (¢, t,) of the system

Find a step response of the system (4) with theiceat
(31), i.e.y(ty, t,) for t,, t, = 0and

Ut t) = H(ty ) = 0 for <0 and/or t2<0(32)
L2721 for 1,20

and zero boundary conditions

x"(0t,)=0, x'(t,,0=0 (33)

Note that in this case from (31) and (4) it follothat

acta mechanica et automatica, vol.5 no.2(2011)

y(t.t2) :[Xh (tl,tZ)]-

X' (ty,t2)
It is well-known that (Podlubny, 1999)

ta
ITH (t) = . 34
t ( ) F(1+a) ( )
From (34) and (7) it is easy to show that
rf’l a
1092yt t,) = 1L 7292H (ty,t ) = 2 . (35
o, Ulttz) =1 172H (1) F (v ay)r (T ay) (35)

Using (8) forN,, N, = 1 and taking into account (31),
(32) (33) and (35) we obtain

(i+))ay, ja.
tj_ lt2 2

e
Snlilpirn

i=0 Fa+(i+Da ]

i j+l)a
© % I tf’lt(zJ+ 2
22T M

i=1j=0 Mi+iog]r[1+(j+Das]

(36)

00 O t(j+1)a2
eI
j=0

ra+(i+yaz ]

where transition matrice¥; are given by (9).

Fig. 2. State variable”(t,,t,) of the system

Formula (36) describes the step response of thermys
(4) with the matrices (31). It is easy to show that
the coefficients1/I'(.) strongly decrease wheh and j
increase. Therefore, in numerical analysis we nmegume
that i and j are bounded by some natural numbéys
andL,.

The plots of the step response (36) where= 50 and
L, = 50 are shown on Fig. 1 and 2.
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5. CONCLUDING REMARKS

A new class of fractional 2D continuous-time linsgs-
tems described by the Roesser model has been tuctdd
The general response formula for such systems kas b

derived (Theorem 1) using the 2D Laplace transform.

The classical Cayley-Hamilton theorem has beennebee

to fractional 2D continuous-time systems (Theorejn 2

It has been shown that using the general respanseufa
we are able to obtain the step response of théidred 2D
continuous-time system. The considerations have ke
strated by a numerical example.

The above considerations can be extended for genera

2D model (Kurek, 1985). An open problems are thsitpo
ity and stability of fractional 2D continuous-tirsgstems.
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