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Abstract: A new class of fractional two-dimensional (2D) continuous-time linear systems is introduced. The general re-
sponse formula for the system is derived using a 2D Laplace transform. It is shown that the classical Cayley-Hamilton theo-
rem is valid for such class of systems. Usefulness of the general response formula to obtain a solution of the system is dis-
cussed and illustrated by a numerical example. 

 

1. INTRODUCTION  

The most popular models of two-dimensional (2D) lin-
ear system are the ones introduced by Roesser (1975), For-
nasini and Marchesini (1976, 1978) and Kurek (1985). 
An overview of 2D linear systems theory is given in (Bose, 
1982, 1985; Kaczorek, 1985, 2001; Gałkowski, 2001, Fa-
rina and Rinaldi, 2000). 

Mathematical fundamentals of fractional calculus and 
its applications are given in the monographs (Oldham and 
Spanier, 1974; Nashimoto, 1984; Miller and Ross, 1993; 
Podlubny, 1999, Ostalczyk, 2008). 

The notion of fractional 2D discrete-time linear systems 
was introduced by Kaczorek (2008a) and extended  
in (Kaczorek, 2008b, 2009, Kaczorek and Rogowski, 2010, 
Rogowski, 2011). An overview in state of the art in 1D 
and 2D fractional systems is given in the monograph  
(Kaczorek, 2011). 

In this paper a new 2D continuous-time fractional 
Roesser type model will be introduced. The general re-
sponse formula for the system will be derived using the 2D 
Laplace transform method (Section 2). Moreover the classi-
cal Cayley-Hamilton theorem will be extended to fractional 
2D continuous-time systems in Section 3. In Section 4 
usefulness of the general response formula to obtaining 
the solution of the system will be discussed and illustrated 
by a numerical example. Concluding remarks are given 
in Section 5. 

To the best knowledge of the author 2D continuous-time 
fractional linear systems have not been considered yet. 

2. FRACTIONAL 2D STATE EQUATIONS  
AND THEIR SOLUTION 

Let ��×� be the set of � ×� real matrices and 
��: = ��×�. The set of nonnegative integers will be de-
noted by �� and the � × � identity matrix will be denoted 
by ��. 

We introduce the following definition of fractional par-
tial derivative of a 2D continuous function �(��, ��)  of two 
independent variables ��, �� ≥ 0. 

Definition 1. The �� order partial derivative of a 2D conti-
nuous function �(��, ��) is given by the formula 

 

( ) ( )

( )
( )

( )

1 2 1 2

( )

1
0

, ,

1
,

i
i

i i

ii
i

i i

t
i

Nt
it

iN
i i i i

D f t t f t t
t

f
d

N t

α
α

α

α

τ
τ

α τ − +

∂=
∂

=
Γ − −

∫

 (1) 

 

where 	 = 1,2; 
� − 1 < �� < 
� ∈ 
 = {1,2, … }, �� ∈ � 
is the order of fractional partial derivative,  
 

1

0

( ) t xx e t dt
∞

− −Γ = ∫  (2)  

 

for � ≥ 0	is the gamma function and 
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Consider the fractional 2D continuous-time system de-
scribed by the state equations 
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where ��(��, ��) ∈ ���, ��(��, ��) ∈ ��� (� = �� + 	 ��) 
are the horizontal and vertical state vectors, respectively, 
(��, ��) ∈ �� is the input vector, �(��, ��) ∈ �	 is the out-
put vector and 	�
� ∈ ���×�, �
 ∈ ���×� for  �, � = 1,2; 
� ∈ �	×�; � ∈ �	×�. 



acta mechanica et automatica, vol.5 no.2(2011) 

 113

The boundary conditions for (4) are given in the form 
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for  � = 0, 1, … ,
� − 1 and �� ≥ 0, 
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for  � = 0, 1, … ,
� − 1 and �� ≥ 0. 
In the following theorem the Riemman-Liouville formula 

of fractional integration of a function �(�) will be used (Pod-
lubny, 1999) 
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where � > 0 is the fractional (real) order of the integration. 
Similarly, we may define the 2D fractional integral of function 
�(��, ��)  
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where �,� > 0. 
Theorem 1. The solution to the equation (4a) with the boun-
dary conditions (5) is given by 
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where 
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Proof. Let �(�, ��) (����, ��) be the Laplace transform  
of a  2D continuous function �(��, ��)  with respect to ��		(��) 
defined by 
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The 2D Laplace transform of �(��, ��) will be denoted 
by �(�, �) and defined by 
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Applying (12) to (1) for 1i =  and taking into account that 
(Kaczorek, 2011) 
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for 0,1,...N = ; we obtain 
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Similarly, for 2i =  in (1) we have 
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for  � = 0, 1, … 
Taking into account (15) and (17) we obtain the 2D Lap-

lace transform of the state equation (4a) 
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Premultiplying (19) by the matrix  
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where 10T  and 01T  are defined by (10). 

Comparing the coefficients at the same powers of � and � 
we obtain (9). 

Substituting the expansion (22) into (20) we obtain  
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Taking into account (Kaczorek, 2011) 
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where � > 0 and ℒ�� denotes the inverse Laplace transform, 
it is easy to show that  
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where ��,�� > 0. 
Applying the inverse 2D Laplace transform to (24) 

and taking into account (26) we obtain the formula (8). 

3. EXTENSION OF CAYLEY-HAMILTON 
THEOREM 

Theorem 2. Let 
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be the characteristic polynomial of the system (4). Then 
the transition matrices ���	satisfy the equality 
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where ��,�� = 0, 1, …. 
Proof. From the definition of the inverse matrix, as well as 
(22) and (27), we have 
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where ( )Adj ,G p s  denotes the adjoint matrix of  �(�, �). 

Comparing the coefficients at the same powers of � and � 
for � ≥ 0 and � ≥ 0we obtain (28) since 	
��(�, �) is a poly-
nomial matrix of the form 
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where  ���	 ∈ ��×� are some real matrices.  
Theorem 2 is an extension of the well-known classical 

Cayley-Hamilton theorem to fractional 2D continuous-time 
systems. 

4. NUMERICAL EXAMPLE 

Example 1. Consider fractional 2D system (4) with �� = 0,7, 
�� = 0,9	and matrices 
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Fig. 1. State variable ��(��, ��) of the system 

Find a step response of the system (4) with the matrices 
(31), i.e. �(��, ��) for ��, �� ≥ 0	and 
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Using (8) for ��,�� = 1 and taking into account (31), 
(32) (33) and (35) we obtain 
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where transition matrices ijT are given by (9). 

 
 Fig. 2. State variable ��(��, ��)  of the system 

Formula (36) describes the step response of the system 
(4) with the matrices (31). It is easy to show that 
the coefficients 1/Γ(. ) strongly decrease when � and � 
increase. Therefore, in numerical analysis we may assume 
that � and � are bounded by some natural numbers �� 
and ��. 

The plots of the step response (36) where �� = 50 and 
�� = 50  are shown on Fig. 1 and 2. 
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5. CONCLUDING REMARKS 

A new class of fractional 2D continuous-time linear sys-
tems described by the Roesser model has been introduced. 
The general response formula for such systems has been 
derived (Theorem 1) using the 2D Laplace transform. 
The classical Cayley-Hamilton theorem has been extended 
to fractional 2D continuous-time systems (Theorem 2). 
It has been shown that using the general response formula 
we are able to obtain the step response of the fractional 2D 
continuous-time system. The considerations have been illu-
strated by a numerical example. 

The above considerations can be extended for general 
2D model (Kurek, 1985). An open problems are the positiv-
ity and stability of fractional 2D continuous-time systems.  
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