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Abstract: Solutions to time-fractional diffusion-wave equatiwith a source term in spherical coordinates &tained for
an infinite medium. The solutions are found usihg Laplace transform with respect to time t, tinétdi Fourier transform
with respect to the angular coordingse the Legendre transform with respect to the spatardinateu, and the Hankel
transform of the order n+1/2 with respect to thaiabcoordinate-. In the central symmetric case with one spatiardimate

r the obtained results coincide with those studaties.

1. INTRODUCTION

The time-fractional diffusion-wave equation
a
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is a mathematical model of important physical plmeaona
ranging from amorphous, colloid, glassy and ponmage-
rials through fractals, percolation clusters, randand dis-
ordered media to comb structures, dielectrics @amlicon-
ductors, polymers and biological systems (see Methd
Klafter, 2000, 2004; Povstenko, 2005; Magin, 2006hai-
kin, 2008, among many others, and references thjerei

The fundamental solution for the time-fractiondfudiion-
wave equation in one Cartesian space-dimensiorokbtaged
by Mainardi (1996). Wyss (1986) obtained the sohdito the
Cauchy problem in terms dfl-functions using the Mellin
transform. Schneider and Wyss (1989) converteddifie-
sion-wave equation with appropriate initial corai into the
integrodifferential equation and found the corresiog
Green functions in terms of Fox functions. Fujitt9q90)
treated integrodifferential equation which integiet the heat
conduction equation and the wave equation.

Previously, in studies concerning this equatiosgherical
coordinates only central symmetric case has besstigated
(Povstenko, 2008a, 2008b, 2008c; Lenci et al., 2Qi%nd
Liu, 2010). In this paper we investigate solutidostime-
fractional diffusion-wave equation in an infiniteecium in
spherical coordinate system in the case of thratasgoordi-
nates, 8, ande.

Consider the time-fractional diffusion-wave equatieith
a source term
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0<r<w,0<f<n,0<¢<2n,0<t<w0,0<ac<?2.

Here we use the Caputo fractional derivative (see=i@lo
and Mainardi, 1997; Kilbas et al., 2006; Klimek02)

;J‘t(t—r)n_a_l&(r)dr

daC(t)_ r(n—a) 0 dt"

P n-l<a<n, ©)
d"cft) _
-7 a=n,
dt"

wherer («) is the gamma function.

For its Laplace transform rule the Caputo fractiaiesiva-
tive requires the knowledge of the initial valuéshe function
c(t) and its integer derivatives of the order 12...,n-1:

L{Lc(t)} = "L c(t)} - nZ_“lc(k)(OJ')s"_l_k : 4
dt? k=0
n-1<a<n,

wheres is the transform variable.
Change of variablg = cosf in (2) leads to the follow-

ing equation
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0<r<ow,-1<u<l1,0<¢<2n,0<t<w,0<ac<?2.
For simplicity, we have not introduced differenttées

for Q(r,0,¢,t) and Q(r,,u,¢,t). For equation (5) the initial

conditions are prescribed:



t=0: c=f(r,u¢), 0<as<2, (6)
t=0: %=F(r,y,¢),1<a52. @)

The solution to the initial value problem (5)-(@rcbe
written in the following form

c= jozn'[_ll j: t(p.¢.0)G¢ (r 1.0 .0t) p?d0d( do

+Ioznj_11 I:F(P,CCD)GF (r.u.0.0.¢,0t) p*dpd? dp
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In the subsequent text, we investigate the fund&ahen
solutions for the first Cauchy proble (v, u, ¢, p, &, ¢, 1),
to the second Cauchy problefp(r, 1, ¢, p, ¢, ¢, t), and for
the source problerdi, (r, 1, ¢, p, ¢, d, t).

2. FUNDAMENTAL SOLUTION
TO THE FIRST CAUCHY PROBLEM

Let us examine the time-fractional diffusion-wavpia-
tion
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0<r<ow,-1<spy<1,0<¢9<2n,0<t<w0,0<ac<?2,

with the prescribed initial value of a function

1
t=0: Gj =r—25(r—p)5(u—i)5(¢—¢), (10)
O<ac<?2,
0G;
t=0: —=0,1<a<2. (11)
ot
The  three-dimensional Dirac  delta  function

6(x)8(y)6(2) after passing to the spherical coordinates

takes the formni—zar(r), but for the sake of simplicity we

have omitted the factotr in the solution (8) as well as the
factor (4m) "t in the initial condition (10).

Now we introduce the new looked-for function= vrc
and use the Laplace transform with respect to tintiee finite
Fourier transform with respect to the angular civarte ¢,
the Legendre transform with respect to the cooteipaand
the Hankel transform of the order+ 1/2 with respect to
the radial coordinate. The details of application the integral
transform technique to the Laplace operator in rpdlecoor-
dinates can be found in the book of {k{1980). In the trans-
forms domain we obtain
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v*(g.m,n,¢,p.z,¢.s)=ﬁanﬂ,z(psmm(z)
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where the asterisk indicates the transforfps, ,(r) is the
Bessel function of the first kind of order+ 1/2, B ($)
are the associated Legendre polynomials of degeeel order
m, s is the Laplace transform variablejs the Hankel trans-
form variable, the integen is the Fourier transform variable,
and the integers andm are the Legendre transform variables.

To invert the Laplace transform we use the follayin
result (Gorenflo and Mainardi, 1997; Kilbas et, @006)

(12)
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where Ea(z) is the Mittag-Leffler function
E,\z)= ,a>0, zOC. 14
@)=2. Fansy (14)

For large values of argument the Mittag-Leffler dtian
is represented as

_ 2.0 ~ 1 1

Ea( act ) F(l—a)—agzt‘" (15)

Inversion of all the integral transforms gives:
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X _[0 E, (‘ afzta) Jn+1,2(r{)Jn+1,2(p€)€d{,
where the prime near the summation symbol dendigs t
the term corresponding toe = 0 in the sum should be
multiplied by the factod /2 .

In the central symmetric caser(= 0, n = 0), taking
into account that the Bessel functions of the #istl of the
order one half can be represented as

Iu2lr)= \/g¥ an
from (16) we get

Gi(r.ot)= ?1“0 j: Ea(— a{zt”)

x sin(ré) sin(p{)df . (18)

Solution (18) was obtained earlier by Povstenkd® &)
using sin-Fourier transform with respect to thelabdoor-
dinater. The limiting case of (18) under— 0,
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2 .
Gi(r,pot) = n2 Io ( a& t”)sm(rf)i dé , (19)
was also investigated earlier (Povstenko, 2008b).
Asymptotic  behavior of Mettag-Leffler function

E,(—a&?t%) (15) is responsible for appearance of singularity

of the solution (16) at the point of applying thelta pulse:
r=p, u=§&, @ = ¢ also fort > 0. The sign of the singu-
larity depends omx: plus for 0 <@ <1 and minus for
1 < a < 2. Only the solution to the classical diffusion equa
tion (@ = 1 and E; (—aé?t?%) = exp(—aé?t%)) has no sin-
gularity.

3. FUNDAMENTAL SOLUTION
TO THE SECOND CAUCHY PROBLEM

In the case of the second Cauchy problem, which

is considered for the order of time derivatite< a < 2,

the initial value of the time derivative of the gi-for

function is prescribed, and for the correspondingdmen-
tal solution we have

a 2
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0<r<ow,-1sp<1,0<9<2n,0<t<w,l<agc<?2,

with the following initial conditions:

t=0: Gg =0,1<ax<2, (21)
0G 1

t=0: a—thr—25(f‘P)5(ﬂ‘5)5(¢‘¢):

1<a<2. (22)

The integral transform technique allows us to resnthe
partial derivatives and to get the expression Her duxiliary
functionv in the transforms domain

1
v*(Emng.0.0.08) = ﬁ‘]ml/z(p{) P(¢)

a-2
x codmlp - gl ——— (23)
s’ +af
After inversion of integral transforms we gain
ad 2 1
Ge(rud.pl.0t)= Z y 2t
P n=0 m=0
- |
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(n+m)r
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where E, (z) is the generalized Mittag-Leffler function

intwo parametersr and § (Gorenflo and Mainardi, 1997;
Kilbas et al., 2006)
n

)= i (an+/3)

, >0, zOC.

(25)

a>0

We have used the following formula for the inverse
Laplace transform

a-p

In the central symmetric case we have (Povstenko,
2008c)

(26)

GF (r,p,t) = Flrpv[g)t anz(_ a{zta)

x sin(r &) sin(pé)dé . @7)
It should be noted that due to the behavior ofMtie
tag-Leffler functionE, ,(—aé?t*) for large values of ar-

gument

1 1
ol %

the fundamental solution (24) has the singularitthvthe

positive sign at the point of applying the deltésport > 0
and all values of < a < 2.

(28)

l<a <2,

4. FUNDAMENTAL SOLUTION
TO THE SOURCE PROBLEM

Consider the time-fractional diffusion equation hwit
a source term being the time and space delta pylsked
at point with the spatial coordinatest and¢.

7Gq _ | 9°Gq 209Gy . 1 9 2)aGQ

= + — + 1-
ate a2 roar rza/!( ary

2

st 9%
12(1- 12) 0¢?
1
t 3 3(r - p) ol -¢) 3lg - @) o (t), (29)
0<r<ow, -1su<l, 0<¢<2n,0<t<w,0<ac< 2,

under zero initial conditions

t=0: Gop=0,0<a<2, (30)
0Gq
t=0: —=0,1<a<?2. (31)
ot
Using integral transform, we arrive at
1 1
Pr(¢)eodmlg -0l 5. (2

v* :ﬁ‘]nﬂlz(pf) +as? '



and after inversion of integral transforms
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X J-:t a_lEa,a (_ afztn) ‘]n+1/2(r{)‘]n+1/2(p{) {df

In the central symmetric case we have (Povstenko,

2008c)
_ 1 ® a1 _ r2.a
GQ(r,p,t)—FmJ-O t Ea’a( af t )
x sin(r &) sin(o&)dé . (34)

Due to the behavior of the Mittag-Leffler function

E, o (—a&?t®) for large values of argument

Eaa (‘ afzta) = —ﬁa%ﬁ

the solution (33) has no singularity at the poingjaplying
the delta pulse for > 0.

(35)

5. CONCLUSIONS

The new solutions to the Cauchy and source problems

for time-fractional diffusive-wave equation haveeheob-
tained for an infinite medium referred to sphericabrdi-

nate systenr,6,¢. For the first time, the non-central-
symmetric case has been considered. The foundiguut

satisfy the appropriate initial conditions and reglu
to the solutions of classical diffusion equationthie limit

a =1land of the standard wave equation in the case
of ballistic diffusion @ = 2). Our results provide a new

analytical tool for studying anomalous diffusion.
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