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Abstract: Solutions to time-fractional diffusion-wave equation with a source term in spherical coordinates are obtained for 
an infinite medium. The solutions are found using the Laplace transform with respect to time t, the finite Fourier transform 
with respect to the angular coordinate �, the Legendre transform with respect to the spatial coordinate �, and the Hankel 
transform of the order n+1/2 with respect to the radial coordinate �. In the central symmetric case with one spatial coordinate 
� the obtained results coincide with those studied earlier.  

 

1. INTRODUCTION  

The time-fractional diffusion-wave equation  
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is a mathematical model of important physical phenomena 
ranging from amorphous, colloid, glassy and porous mate-
rials through fractals, percolation clusters, random and dis-
ordered media to comb structures, dielectrics and semicon-
ductors, polymers and biological systems (see Metzler and 
Klafter, 2000, 2004; Povstenko, 2005; Magin, 2006; Uchai-
kin, 2008, among many others, and references therein). 

The fundamental solution for the time-fractional diffusion-
wave equation in one Cartesian space-dimension was obtained 
by Mainardi (1996). Wyss (1986) obtained the solutions to the 
Cauchy problem in terms of H-functions using the Mellin 
transform. Schneider and Wyss (1989) converted the diffu-
sion-wave equation with appropriate initial conditions into the 
integrodifferential equation and found the corresponding 
Green functions in terms of Fox functions. Fujita (1990) 
treated integrodifferential equation which interpolates the heat 
conduction equation and the wave equation. 

Previously, in studies concerning this equation in spherical 
coordinates only central symmetric case has been investigated 
(Povstenko, 2008a, 2008b, 2008c; Lenci et al., 2009, Qi and 
Liu, 2010). In this paper we investigate solutions to time-
fractional diffusion-wave equation in an infinite medium in 
spherical coordinate system in the case of three spatial coordi-
nates �, �, and �. 

Consider the time-fractional diffusion-wave equation with 
a source term 
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∞<≤ r0 , πθ ≤≤0 , πϕ 20 ≤≤ , ∞<< t0 , 20 ≤< α . 

Here we use the Caputo fractional derivative (see Gorenflo 
and Mainardi, 1997; Kilbas et al., 2006; Klimek, 2009) 
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where Γ(�) is the gamma function. 
For its Laplace transform rule the Caputo fractional deriva-

tive requires the knowledge of the initial values of the function 
�(	) and its integer derivatives of the order 1,...,2,1 −= nk : 
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,1 nn <<− α  

where � is the transform variable. 
Change of variable � = ���� in (2) leads to the follow-

ing equation 
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∞<≤ r0 , 11 ≤≤− µ , πϕ 20 ≤≤ , ∞<< t0 , 20 ≤< α . 

For simplicity, we have not introduced different letters 
for ( )trQ ,,, ϕθ  and ( )trQ ,,, ϕµ . For equation (5) the initial 

conditions are prescribed: 
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( )ϕµ ,,:0 rfct == , 20 ≤< α ,     (6) 

( )ϕµ,,:0 rF
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The solution to the initial value problem (5)-(7) can be 
written in the following form 
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In the subsequent text, we investigate the fundamental 
solutions for the first Cauchy problem ��(�, �,�,�, �,�, �), 
to the second Cauchy problem ��(�, �,�,�, �,�, �), and for 
the source problem ��(�, �,�,�, �,�, �).  

2. FUNDAMENTAL SOLUTION  
TO THE FIRST CAUCHY PROBLEM  

Let us examine the time-fractional diffusion-wave equa-
tion  
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∞<≤ r0 , 11 ≤≤− µ , πϕ 20 ≤≤ , ∞<< t0 , 20 ≤< α , 

with the prescribed initial value of a function 
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r

Gt f 2
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The three-dimensional Dirac delta function 
	
��	
�	(�) after passing to the spherical coordinates 

takes the form 
�

���
	�(�), but for the sake of simplicity we 

have omitted the factor 4� in the solution (8) as well as the 
factor (4�)��	in the initial condition (10).  

Now we introduce the new looked-for function � = √�� 
and use the Laplace transform with respect to time �, the finite 
Fourier transform with respect to the angular coordinate �, 
the Legendre transform with respect to the coordinate �, and 
the Hankel transform of the order � + 1/2 with respect to 
the radial coordinate �. The details of application the integral 
transform technique to the Laplace operator in spherical coor-
dinates can be found in the book of Özişik (1980). In the trans-
forms domain we obtain 
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where the asterisk indicates the transforms, �	��/
(�) is the 
Bessel function of the first kind of order � + 1/2,  �	

�(�) 
are the associated Legendre polynomials of degree � and order 
�, � is the Laplace transform variable, � is the Hankel trans-
form variable, the integer � is the Fourier transform variable, 
and the integers � and � are the Legendre transform variables. 

To invert the Laplace transform we use the following 
result (Gorenflo and Mainardi, 1997; Kilbas et al. , 2006)  
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where ( )zEα  is the Mittag-Leffler function  
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For large values of argument the Mittag-Leffler function 
is represented as 
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Inversion of all the integral transforms gives: 
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where the prime near the summation symbol denotes that 
the term corresponding to � = 0  in the sum should be 
multiplied by the factor 1/2 . 

In the central symmetric case (� = 0, � = 0), taking  
into account that the Bessel functions of the first kind of the 
order one half can be represented as  
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from (16) we get 
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Solution (18) was obtained earlier by Povstenko (2008c) 
using sin-Fourier transform with respect to the radial coor-
dinate �. The limiting case of (18) under � → 0, 
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 was also investigated earlier (Povstenko, 2008b).  
Asymptotic behavior of Mettag-Leffler function 

��

−������	(15) is responsible for appearance of singularity 

of the solution (16) at the point of applying the delta pulse: 
� = �, � = �, � = � also for � > 0. The sign of the singu-
larity depends on �: plus for 0 < � < 1 and minus for 
1 < � < 2. Only the solution to the classical diffusion equa-
tion (� = 1 and ��
−��

���� = exp
−������) has no sin-
gularity.  

3. FUNDAMENTAL SOLUTION  
TO THE SECOND CAUCHY PROBLEM 

In the case of the second Cauchy problem, which 
is considered for the order of time derivative 1 < � ≤ 2, 
the initial value of the time derivative of the sought-for 
function is prescribed, and for the corresponding fundamen-
tal solution we have 
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∞<≤ r0 , 11 ≤≤− µ , πϕ 20 ≤≤ , ∞<< t0 , 21 ≤< α , 

with the following initial conditions: 

0:0 == FGt , 21 ≤< α  ,            (21)  
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The integral transform technique allows us to remove the 
partial derivatives and to get the expression for the auxiliary 
function � in the transforms domain  
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After inversion of integral transforms we gain 
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where ��,�(�) is the generalized Mittag-Leffler function 
in two parameters � and � (Gorenflo and Mainardi, 1997; 
Kilbas et al., 2006) 
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We have used the following formula for the inverse 
Laplace transform  
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In the central symmetric case we have (Povstenko, 
2008c)  
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It should be noted that due to the behavior of the Mit-
tag-Leffler function ��,�
−��

���� for large values of ar-
gument 
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the fundamental solution (24) has the singularity with the 
positive sign at the point of applying the delta pulse for � > 0 
and all values of 1 < � < 2. 

4. FUNDAMENTAL SOLUTION  
TO THE SOURCE PROBLEM 

Consider the time-fractional diffusion equation with 
a source term being the time and space delta pulse applied 
at point with the spatial coordinates �, �	and �. 
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under zero initial conditions  
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Using integral transform, we arrive at 
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and after inversion of integral transforms  
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In the central symmetric case we have (Povstenko, 
2008c)  
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Due to the behavior of the Mittag-Leffler function  
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�−������	for large values of argument 
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the solution (33) has no singularity at the point of applying 
the delta pulse for � > 0.  

5. CONCLUSIONS  

The new solutions to the Cauchy and source problems 
for time-fractional diffusive-wave equation have been ob-
tained for an infinite medium referred to spherical coordi-
nate system �,	,
. For the first time, the non-central-
symmetric case has been considered. The found solutions 
satisfy the appropriate initial conditions and reduce  
to the solutions of classical diffusion equation in the limit 
� = 1	and of the standard wave equation in the case  
of ballistic diffusion (� = 2). Our results provide a new 
analytical tool for studying anomalous diffusion. 
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