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Abstract: In this paper the problem of the influence of fixed point computation on numerical solutions of linear differential 
equations of fractional order is considered. It is a practically important problem, because of potential possibilities of using 
dynamical systems of fractional order in the tasks of control and filtering. Discussion includes numerical method is based 
on the Grünwald-Letnikov fractional derivative and how the application of fixed-point architecture influences its operation. 
Conclusions are illustrated with results of floating-point arithmetic with double precision and fixed point arithmetic with dif-
ferent word lengths. 

 

1. INTRODUCTION 

Dynamical system described by fractional differential 
equations take an increasing role in technical sciences. 
The initial concept dating to private correspondence 
of Leibnitz and L’Hospital from 1695, was systematically 
developed however outside the main stream. Currently 
we can say, that mathematical side of the problem is well 
rounded, what can be observed by presence of multiple 
monographs such as Miller and Ross (1993); Oldham 
and Spanier (1974); Podlubny (1999); Samko et al. (1993). 

In recent years especially interesting is the aspect of ap-
plications. They are found in modelling of supercapacitors, 
distributed parameter systems, problems of variational 
calculus or modelling of very complicated phenomena  
such as flame spreading Lederman et al. (2002); Weilbeer 
(2005). Besides modelling also fractional systems are used 
to influence reality as controllers Ortigueira (2008); 
Ruszewski (2008) or filters Magin et al. (2011). In the con-
text of fractional order systems also problems such as state 
estimation (Dzieliński and Sierociuk (2008)), controllability 
(Klamka (2009)) or stability (Kaczorek (2008a); Busłowicz 
(2008); Kalinowski and Busłowicz (2011)) are considered. 
A comprehensive survey of theory and applications of frac-
tional calculus in control engineering can be found in Os-
talczyk (2008). 

In this paper authors focus on the problem of actual im-
plementation of fractional order systems. Many works are 
devoted to the concept of approximation of fractional order 
systems with integer order systems (see for example 
Djouambi et al. (2007); Sobolewski and Ruszewski 
(2011)). This paper analyses the application of numerical 
methods for solving fractional order differential equations. 
Because the focus of this research is the implementation 
of fractional controllers and filters on commercially avail-
able hardware platforms special emphasis is placed 
on influence of fixed point computation. In the following 
parts of the paper considered class of systems is described, 

solution of differential equations on dedicated hardware 
platforms with individual section on problems quantisation. 
Then discretisation of fractional differential equations 
is analysed. Finally numerical experiments are conducted 
in both floating and fixed point arithmetic. 

2. CONSIDERED SYSTEMS 

In this paper linear fractional order dynamical system 
described by a following system of fractional order equa-
tions 
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where: Γ function is given by 
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Important fact is that in analogue to integer order 
equations one can express solution of (1) by variation of 
constants, that is 
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where: � is the Mittag-Leffler function (see for example 
Weilbeer (2006)) given by: 
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It should be noted that Mittag-Leffler function is the 
generalisation of e� and for α = 1 the following equality 
occurs 

zzE e=)(1  (8) 

In this paper only initial conditions equal to zero will be 
considered. It is justified by the fact that the main goal is 
to devise methods of effective filter and controller imple-
mentation. Moreover one can transform a fractional system 
into one with zero initial conditions through addition 
of additional inhomogeneity (see for example Podlubny 
(2000)). 

3. SOLVING DIFFERENTIAL EQUATIONS  
WITH DEDICATED CONTROL SYSTEMS 

In classical control systems that is those, which model 
of controller or system is described by integer order diffe-
rential equations the following hardware platforms 
are used:   
− universal platforms: 

− classical computer systems, 
− industrial PLC controllers, 
− universal microprocessor controllers, 

− dedicated platforms: 
− using general purpose processors, 
− using digital signal processors (DSP), 
− using FPGA circuits. 
 In case of fractional order differential equations this 

division stays correct. Because of possibility of obtaining 
very short computation times - dedicated systems are very 
promising. Among those especially systems using FPGA 
circuits raise interest. 

Using a dedicated control system for computation 
of both ordinary and fractional differential equations car-
ries many consequences. Substantial benefits are that one 
can achieve substantial increase in computation speed and 
keep the regimes of real time processing. On the other 
hand use of dedicated systems introduces multiple con-
straints associated with their construction and type 
of operation. The most serious limit introduced by dedi-
cated control systems is lack of support for floating-point 
arithmetic. Most microcontrollers designed for control 
systems do not have an integrated floating-point coproces-
sor. Similar situation occurs for DSPs. One can of course 
show solutions supporting floating-point formats but that 
is not the norm. Different case is for implementation 
of such formats in FPGA circuits. These circuits are rather 
freely configurable. One can also implement the support 
for writing of the floating-point data format. However 
because of needed amount of circuit's hardware resources 

it is not always possible or economically feasible. 
In this paper control systems with fixed-point data 

formats are considered. In case of the FPGA circuits these 
formats are supported by hardware description languages 
(e.g. VHDL) or are relatively easy to implement. 
The most substantial merit of using the fixed-point arith-
metic is the possibility of construction of parallel data 
processing structures, which can significantly accelerate 
computation (see Wiatr (2003)). Other important merit 
is the possibility of using computation words of desired 
length (see Piątek (2007)). When programming microcon-
trollers or DSP the programmer can use the data types 
available in the microprocessor architecture. Using of non 
standard data types is associated with need for additional 
operations, which can increase the computation time. 

When solving systems of differential equations 
in computer systems, so also in the control systems 
we have to deal with quantisation of signals and parame-
ters in time (discretisation) and in values (quantisation) 
caused by digital character of computation. Both these 
operations have their properties and can disrupt the results 
of computation - that is the solution of the system of diffe-
rential equations. 

4. QUANTISATION 

Application of digital systems, especially those which 
use a fixed-point data format causes introduction of nu-
merical errors to the computation. Sources of these errors 
are (see Gevers and Li (1993); Świder (2003, 2002)):  
− quantisation of analogue signals – for example by A/D 

converters in control systems; 
− computation result overflow errors caused by too short 

data word length; 
− round-off errors of arithmetic operations – multiplica-

tion, addition;  
− quantisation errors of model coefficients resulting 

from writing them on words with finite length. 
Converter quantisation errors are determined by reso-

lution of used A/D converter system. In the case of model-
ling the converter model by stochastic methods it is as-
sumed that the converter model consists of a sampling 
system and a quantiser. Quantiser is modelled as a sum-
mation node introducing a random error to the signal.  
It is assumed that this error is a discrete white noise not 
correlated with the sampled signal and its variance is de-
pendent on the number of converter bits (see Świder 
(2003)). Quantisation noise created in the process of ana-
logue-digital conversion can be filtered in the control 
system by the usage of appropriate digital filters. 

Overflow errors are practically present only in the sys-
tems performing computations using fixed point arithme-
tic. They occur in the situations, when the result of arith-
metic operation requires writing in the registry of larger 
number of bits than it is available in the computation sys-
tem. In some situations (e.g. using notation in the two's 
complement code) it causes large relative errors (see 
Gevers and Li (1993)). Elimination of overflow errors 
relies on appropriate scaling of signals and coefficients 
of the model. Such operations unfortunately introduce 
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additional round-off errors associated with changing 
the signals and model coefficients ranges. In computation 
systems using floating-point arithmetic overflow errors 
are not present or occur rarely, because of the large ranges 
of such data storage. 

Other two kinds of errors - round off errors of arithme-
tic operations and parameter quantisation errors are al-
ways present during digital realisation of control algo-
rithms and it is not possible to completely eliminate their 
influence on the result of computation (see Gevers and Li 
(1993)). Arithmetic operation round off errors are intro-
duced during the computations connected to determination 
of system response and their level is dependent on the 
structure of algorithm and the data word length. Model 
coefficient quantisation errors are introduced by the finite 
data word length. Ideal values of parameters are rounded 
to the values that can be stored. Similar to the arithmetic 
operation errors, coefficient quantisation errors are de-
pendent on the structure of algorithm and the data word 
length. Effects connected with these two kinds of errors 
are called FWL (Finite Word Length) effects (see Gevers 
and Li (1993)). They can be limited by increasing 
the length of data words and by changing model structure. 
Length modification is not always possible. Usually 
in computer systems only two or three word lengths 
are available, and in simple microprocessor system even 
only one. Relatively simple increase of precision is possi-
ble only in the range of data types supported by the archi-
tecture and additional improvements (above the machine 
command precision) has a cost of a substantial increase 
in the number of commands required for determination 
of system response. In case of realisation of control sys-
tem with dedicated architecture for example with FPGA 
circuits, word length can be adjusted at will. Too long 
word lengths however cause substantial increase in the 
hardware resources usage, which can be interpreted as the 
increase in the computation cost. 

5. DISCRETISATION OF FRACTIONAL ORDER 
DIFFERENTIAL EQUATIONS 

There are different classes of numerical methods for 
solving fractional differential equations (see Weilbeer 
(2005)). One of them are linear multistep methods. Their 
construction relies on transformation of fractional differ-
ential equation to the equivalent Volterra integral equation 
and solving it through quadratures. It is similar to Adams 
methods for ODE (see Hairer et al. (2000)). Another 
group considers equivalent Abel-Volterra equation and 
solves it via power series - these are generalised Taylor 
expansion and Adomian decomposition method. One 
more group are collocation methods also popular for inte-
gral equations. For applications in the context of filter and 
controller implementations the most practical seem to be 
backward difference methods. This class includes Diet-
helm method and quadrature based Lubich method. 

In this paper third backward difference method is con-
sidered – that is the method based on the Grünwald-
Letnikov fractional derivative. By this definition the frac-
tional derivative takes form of a limit of fractional differ-
ence quotients 

α

α

α

α

h

tx
tx

t

h

h

))((
lim=)(

d

d

0

∆

→
 (9) 

where: 

mth

k
m

k
h khtx

k
tx

/=0=

)(1)(=))(( −







−∆ ∑

αα  (10) 

Generalised Newton symbol is given by  
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Fractional derivative takes form  
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It should be noted that definitions of Grünwald-
Letnikov and Caputo are not fully equivalent. It is espe-
cially important in the context of fractional differential 
equations, where initial conditions influence the solution 
in different way (see Weilbeer (2005)). If initial condi-
tions are zero, as in the considered case the solutions 
are however equal. 

As it can be seen in the fractional difference when ℎ 
decreases 	 increases, so in the limit sum is infinite. 
The idea of numerical solution on the interval � ∈ [0,
] 
relies on determining finite 	 and omitting the limit. 
In that way differential equation (1) becomes 
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 It should be noted that �(�) is present on both sides 
of equality. In case of nonlinear systems it would require 
iterational procedures, however because the considered 
system is linear so  
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Different approach can be seen in the work of Pod-
lubny (2000). Method presented there formulates 
the problem of numerical solution as a system of linear 
algebraic equations solving the fractional differential 
equations in all points of the interval simultaneously. 
That approach has many benefits, but is not adequate 
for series signal processing. 

As it can be seen, when changing 	 also ℎ is changed 
which can cause FWL effects. In the next section the be-
haviour of numerical solution of fractional differential 
equation obtained with (16) behaves when changing pa-
rameters. 

6. FLOATING-POINT ARCHITECTURE 
SIMULATIONS 

In order to perform simulational analysis of the solu-
tion of fractional differential equation the following ex-
ample needs to be considered.   
Example 1. (Kaczorek (2008b)) The unit step response 
of the following system is considered  
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 From (3) the solution is  
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Fig. 1. Comparison of analytical and numerical solution  

of fractional differential equation (19) with α=3/2  
for m=10 

 
Fig. 2. Comparison of analytical and numerical solution  

   of fractional differential equation (19) with α=3/2  
   for m=100 

 
Fig. 3. Comparison of analytical and numerical solution  

  of fractional differential equation (19) with α=3/2  
  for m=500 

 The step response was expressed by Mittag-Leffler 
function (6) It should be noted that for � > 1 initial condi-
tions for all � < � need to be specified. 

Obtained analytical solution can be used for verifica-
tion of correctness of (16). System with � = 3/2 is con-
sidered. Comparisons are made for different 	. Computa-
tions were performed in Matlab in double precision. Ana-
lytical solution consisted of 100 first expression of power 
series form of Mittag-Leffler function (6). The analysis 
was performed on interval � ∈ [0, 10]. 

It should be noted that for � > 1 solutions have oscil-
latory character. Solution consisting of 10 points (Fig. 1) 
represents the oscillations but it happens in different mo-
ment and with much smaller amplitude. Increasing preci-
sion to 100 points the solution improves (Fig. 2), and for 
500 points (Fig. 3) numerical solution becomes truly close 
to an analytical one. It should be noted that increasing 
number of points in the interval the requirements toward 
solutions increase, as in every step of computation all the 
earlier ones are necessary. 
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7. FIXED POINT ARCHITECTURE SIMULATIONS 

For numerical experiments Matlab environment was 
used with the Fixed-Point Toolbox. With this software 
one can create and use variables with desired word lengths 
in bits. These simulations were performed for step re-
sponse of system (19). Numerical method (16) was used 
and number of steps per interval was set to 	 = 100. 
Compared are: 
− analytical solution; 
− numerical solution using method (16) operating with 

floating-point arithmetic;  
− numerical solution using method (16) operating with 

fixed-point arithmetic.  
In the last case a fixed point notation allowing opera-

tion on numbers with nonzero fractional part. These num-
bers are coded with use of two's complement code (see 
Biernat(2001); Pochopień(2004)). Thanks to using it scal-
ing could be avoided. Figure 4 presents the format of this 
fixed-point notation.  

 
Fig. 4. Fixed point notation during the experiments 

 
Fig. 5. System unit step response (FL=8) 

Corresponding to the Fig. 4 following quantities were 
introduced: 
− FL denotes number of bits devoted to the fractional 

part,  
− IL denotes number of bits devoted to the integer part,  
− total number of bits in the data word was  

WL = IL + FL .  
 It was decided to use a single word length for all ele-

ments of the algorithm. That means that both system coef-
ficients, constants associated with α and number of steps 
and system state were denoted in variables with the same 
word length and the same lengths of fractional and integer 

parts. Nine numerical experiments were performed, 
in which step response of system (19) was computed. 
In every experiment the word length for the fractional part 
was increased by one from 8 to 16 bits. The most repre-
sentative were the results obtained for fractional parts 
of 8, 9, 10, 12 and 16 bits. For all the experiments IL=2 
was set. 

 
Fig. 6. System unit step response (FL=9) 

 
Fig. 7. System unit step response (FL=10) 

 
Fig. 8. System unit step response (FL=14) 
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Fig. 9. System unit step response (FL=16) 

Results of simulations are presented in Figs. 5, 6, 7, 8 
and 9. In the figures three responses are presented:  
analytical, computed numerically with floating-point 
and computed numerically with fixed point. 

 
Fig. 10. Coefficient values for WL=14 

 
Fig. 11. Coefficient values for WL=18 

Analysis of the figures, allows to observe, that reduc-
tion of fractional part word length increases the numerical 

error of such computed fractional part. For FL=8 (Fig. 5) 
the response differs so much that it loses its original char-
acter. 

Further study allowed to find one of the reasons 
for substantial differences between analytical, floating-
point and fixed-point solutions. It appears that it has 
a strong connection to the coefficients �� (18). In Fig. 10 
and 11 values of coefficients �� computed analytically and 
numerically with application of fixed point arithmetic 
with different word lengths. Vertical axes in those figures 
are in the logarithmic scale for easier observation of the 
effects. 

For word length WL=14 the effect of quantisation 
is evidently visible for coefficients with index greater than 
13. Moreover coefficients with index greater than 27 they 
become equivalent to zero, regardless that analytically 
they are different from zero. For word length WL=18 
the similar effect is visible, however quantisation is visi-
ble for indices greater than 34 and they become zero for 
indices greater than 80. Coefficients equal to zero are not 
visible in the plot, as 0 does not belong to the domain 
of algorithm. 

It should be noted, that this effect causes qualitative 
change in the system character. From the system 
with potentially infinite memory it becomes a system 
with finite memory. It should be compared with practi-
cally stable discrete fractional systems (see for example 
Kaczorek(2011)). 

8. CONCLUSIONS 

After analysis of results of numerical experiments 
it can be concluded, that main reasons for errors occurring 
when using fixed-point arithmetic are the quantisation and 
rounding of coefficients (18). In figures it can be ob-
served, that for analysed systems these coefficients are 
reduced along with index. For small values this effect 
is especially visible. Below certain value (certain index) 
quantisation reduces them to zero. Simulations illustrated, 
that the errors caused by using fixed-point arithmetic can 
significantly change the response of analysed system. 
Word length should be then chosen very carefully. 
In further works the possibility of using different word 
lengths for coefficients and state. Additional modification 
of numerical method should be considered in order to 
increase robustness to these errors. 

It should be also noted, that zeroing of coefficients due 
to fixed-point computation leads to system with finite 
memory. It is very similar to practically stable discrete 
fractional systems. It is interesting how other properties 
of these systems transfer to analysed systems. 
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