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Abstract: In this paper the problem of the influence of fiyemint computation on numerical solutions of lindéferential
equations of fractional order is considered. laipractically important problem, because of potdnibssibilities of using
dynamical systems of fractional order in the tasksontrol and filtering. Discussion includes nuinal method is based
on the Griinwald-Letnikov fractional derivative anow the application of fixed-point architecturelirgnces its operation.
Conclusions are illustrated with results of floatjpgjnt arithmetic with double precision and fixediqt arithmetic with dif-

ferent word lengths.

1. INTRODUCTION

Dynamical system described by fractional differanti
equations take an increasing role in technical nees.
The initial concept dating to private corresponaenc
of Leibnitz and L’Hospital from 1695, was systernatly
developed however outside the main stream. Cuyrentl
we can say, that mathematical side of the probkemwall
rounded, what can be observed by presence of deultip
monographs such as Miller and Ross (1993); Oldham
and Spanier (1974); Podlubny (1999); Samko etl893).

In recent years especially interesting is the aspkap-
plications. They are found in modelling of supekafors,
distributed parameter systems, problems of vanatio
calculus or modelling of very complicated phenomena
such as flame spreading Lederman et al. (2002); bésil
(2005). Besides modelling also fractional systemesused
to influence reality as controllers Ortigueira (2008
Ruszewski (2008) or filters Magin et al. (2011)tHe con-
text of fractional order systems also problems sagistate
estimation (Dzieliski and Sierociuk (2008)), controllability
(Klamka (2009)) or stability (Kaczorek (2008a); Bugicz
(2008); Kalinowski and Bustowicz (2011)) are comsid.

A comprehensive survey of theory and applicatidnfsa-
tional calculus in control engineering can be foumdDs-
talczyk (2008).

In this paper authors focus on the problem of ddéma
plementation of fractional order systems. Many vgoake
devoted to the concept of approximation of fractioorder

systems with integer order systems (see for example

Djouambi et al. (2007); Sobolewski an&uszewski
(2011)). This paper analyses the application of enical
methods for solving fractional order differentiajuations.
Because the focus of this research is the impleatient
of fractional controllers and filters on commergiadlvail-
able hardware platforms special emphasis
on influence of fixed point computation. In the fallag
parts of the paper considered class of systemessesrithed,

is placed

solution of differential equations on dedicated dveare
platforms with individual section on problems qusation.
Then discretisation of fractional differential etjoas
is analysed. Finally numerical experiments are cotet
in both floating and fixed point arithmetic.

2. CONSIDERED SYSTEMS

In this paper linear fractional order dynamicalteys
described by a following system of fractional or@gua-
tions

d? -
OITax(t)_Ax(t)+Bu(t), O<as<1 1)
x(0)=xo

where:x(t) € R™, u(t) € R” andA, B are constant matric-
es of appropriate dimensions. Fractional diffeidh ope-
ration of ordera is given by Caputo definition (see for
example Kaczorek (2008b)).

X(n)(T)
r(n-a)Jo-r)a*in

d? 1 t
—X() =
at?

dr, n=[al 2)

where:T" function is given by
r2)= [tz tdt
@=

Important fact is that in analogue to integer order
equations one can express solution of (1) by variabf
constants, that is

x(t) = @ ()Xg + -[;(D(t —7)Bu(r)dr 3)
@y (t) = E4 (AtY) (4)
®(t) = 17 7E 4 4 (AL) )
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where: E is the Mittag-Leffler function (see for example
Weilbeer (2006)) given by:

Eqp(2)= Zr(ak o5 97080 (6)

Eq(2)=E41(2), (7)

It should be noted that Mittag-Leffler function ike
generalisation ok? and fora = 1 the following equality
occurs

a>0

E1(2) =€ (8)

In this paper only initial conditions equal to zevil be
considered. It is justified by the fact that theimgoal is
to devise methods of effective filter and contmolimple-
mentation. Moreover one can transform a fracti@yatem
into one with zero initial conditions through adloiit
of additional inhomogeneity (see for example Podjub
(2000)).

3. SOLVING DIFFERENTIAL EQUATIONS
WITH DEDICATED CONTROL SYSTEMS

In classical control systems that is those, whicidet
of controller or system is described by integereordiffe-
rential equations the following hardware platforms
are used:

— universal platforms:

— classical computer systems,

— industrial PLC controllers,

— universal microprocessor controllers,

— dedicated platforms:

— using general purpose processors,

— using digital signal processors (DSP),

- using FPGA circuits.

In case of fractional order differential equatidhss
division stays correct. Because of possibility btaining
very short computation times - dedicated systerasvary
promising. Among those especially systems using APG
circuits raise interest.

Using a dedicated control system for computation
of both ordinary and fractional differential equats car-
ries many consequences. Substantial benefits ateotie
can achieve substantial increase in computatioedpad
keep the regimes of real time processing. On therot
hand use of dedicated systems introduces multiple c
straints associated with their construction andetyp
of operation. The most serious limit introduced dndi-
cated control systems is lack of support for flogtpoint
arithmetic. Most microcontrollers designed for coht
systems do not have an integrated floating-poiptcoces-
sor. Similar situation occurs for DSPs. One carairse
show solutions supporting floating-point formats ibat
is not the norm. Different case is for implemerdati
of such formats in FPGA circuits. These circuits eather
freely configurable. One can also implement thepsup
for writing of the floating-point data format. Hower
because of needed amount of circuit's hardwareurese
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it is not always possible or economically feasible.

In this paper control systems with fixed-point data
formats are considered. In case of the FPGA cisdhi¢se
formats are supported by hardware description laggs
(e.g. VHDL) or are relatively easy to implement.
The most substantial merit of using the fixed-pairith-
metic is the possibility of construction of paralidata
processing structures, which can significantly aareeé
computation (see Wiatr (2003)). Other important itmer
is the possibility of using computation words ofsited
length (see Riek (2007)). When programming microcon-
trollers or DSP the programmer can use the datastyp
available in the microprocessor architecture. Ugsihgon
standard data types is associated with need foitiadall
operations, which can increase the computation.time

When solving systems of differential equations
in computer systems, so also in the control systems
we have to deal with quantisation of signals anchpee-
ters in time (discretisation) and in values (qusatibn)
caused by digital character of computation. Bothsth
operations have their properties and can disrupteélkults
of computation - that is the solution of the systafndiffe-
rential equations.

4. QUANTISATION

Application of digital systems, especially thoseiath
use a fixed-point data format causes introductibmuw
merical errors to the computation. Sources of thasers
are (see Gevers and Li (1998)yider (2003, 2002)):

— quantisation of analogue signals — for example iy A
converters in control systems;

— computation result overflow errors caused by toorsh
data word length;

— round-off errors of arithmetic operations — mulicp-
tion, addition;

— quantisation errors of model coefficients resulting
from writing them on words with finite length.
Converter quantisation errors are determined bg-res

lution of used A/D converter system. In the casenoflel-

ling the converter model by stochastic methodss ibs-
sumed that the converter model consists of a sagpli
system and a quantiser. Quantiser is modelled sisnma
mation node introducing a random error to the digna

It is assumed that this error is a discrete whitese not

correlated with the sampled signal and its variaiscde-

pendent on the number of converter bits (Seeder

(2003)). Quantisation noise created in the proocésma-

logue-digital conversion can be filtered in the woh

system by the usage of appropriate digital filters.

Overflow errors are practically present only in gyes-
tems performing computations using fixed point harie-
tic. They occur in the situations, when the resdlarith-
metic operation requires writing in the registry lafger
number of bits than it is available in the compigtatsys-
tem. In some situations (e.g. using notation in tie's
complement code) it causes large relative erroee (s
Gevers and Li (1993)). Elimination of overflow erso
relies on appropriate scaling of signals and coffits
of the model. Such operations unfortunately intiu



additional round-off errors associated with chaggin
the signals and model coefficients ranges. In cdatmn
systems using floating-point arithmetic overflowraes
are not present or occur rarely, because of tlgeleanges
of such data storage.

Other two kinds of errors - round off errors oftanne-
tic operations and parameter quantisation erroes ar
ways present during digital realisation of contedo-
rithms and it is not possible to completely elimaaheir
influence on the result of computation (see Gewagrs Li
(1993)). Arithmetic operation round off errors drgro-
duced during the computations connected to detextnoim
of system response and their level is dependenthen
structure of algorithm and the data word length.dkglo
coefficient quantisation errors are introduced lhy finite
data word length. Ideal values of parameters avaded
to the values that can be stored. Similar to théhmetic
operation errors, coefficient quantisation errore de-
pendent on the structure of algorithm and the daied
length. Effects connected with these two kinds obrs
are called FWL (Finite Word Length) effects (seev&s
and Li (1993)). They can be limited by increasing
the length of data words and by changing modektire.
Length modification is not always possible. Usually
in computer systems only two or three word lengths
are available, and in simple microprocessor syséeen
only one. Relatively simple increase of precisisrpossi-
ble only in the range of data types supported leyatchi-
tecture and additional improvements (above the imnach
command precision) has a cost of a substantiakass
in the number of commands required for determimatio
of system response. In case of realisation of ocbrdys-
tem with dedicated architecture for example withGAP
circuits, word length can be adjusted at will. Tlomg
word lengths however cause substantial increasthen
hardware resources usage, which can be interpestede
increase in the computation cost.

5. DISCRETISATION OF FRACTIONAL ORDER
DIFFERENTIAL EQUATIONS

There are different classes of numerical methods fo
solving fractional differential equations (see Vie#r
(2005)). One of them are linear multistep metholdseir
construction relies on transformation of fractiowmlffer-
ential equation to the equivalent Volterra integrquation
and solving it through quadratures. It is similarAdams
methods for ODE (see Hairer et al. (2000)). Another
group considers equivalent Abel-Volterra equatiard a
solves it via power series - these are generalismdor
expansion and Adomian decomposition method. One
more group are collocation methods also populaiirfta-
gral equations. For applications in the contextiltér and
controller implementations the most practical sdenbe
backward difference methods. This class includest-Di
helm method and quadrature based Lubich method.

In this paper third backward difference methodads-c

sidered — that is the method based on the Griinwald-

Letnikov fractional derivative. By this definitiotine frac-
tional derivative takes form of a limit of fractiahdiffer-
ence quotients
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d? (AFX)()
S X(t) = lim — )
dt? h-0
where:
m K a
25 = (1) [ka(t-kh) (10)
k=0 h=tm
Generalised Newton symbol is given by
a —_
_ k-a) _ (11)
k) T(-a)r(k+1)
a(a-1)0..Ha-j+1) :
_ i for jON (12)
1 for j=0
Fractional derivative takes form
d 1 - k[ @
—X(@t)= lim — -1 X(t —kh 13
X h"i‘"ohaé( )@( ) (13)

h=tm

It should be noted that definitions of Griinwald-
Letnikov and Caputo are not fully equivalent. Itdspe-
cially important in the context of fractional diffntial
equations, where initial conditions influence thlw@usion
in different way (see Weilbeer (2005)). If initigbndi-
tions are zero, as in the considered case the icofut
are however equal.

As it can be seen in the fractional difference wien
decreasesn increases, so in the limit sum is infinite.
The idea of numerical solution on the intereat [0, T]
relies on determining finiten and omitting the limit.
In that way differential equation (1) becomes

Z( 1) ( Jx(t—kh) AX(t) +Bu(t),

(14)
tD[O,T], h="Tm
or equivalently
x(t) Z( 1) ( Jx(t—kh) Ax(t) + Bu(t) (15)

h:T/m,t: ph, p=01,...,m

It should be noted thai(t) is present on both sides
of equality. In case of nonlinear systems it worgduire
iterational procedures, however because the comside
system is linear so

p
X(t) = (1 - h”A)‘l[h”Bu(t) - ex(t- kh)] (16)
k=1
h=Tmt=ph p=01,..,m )
o, = (—1)k(ij, k=12 ..m (18)

103



Pawet Patek, Jerzy Baranowski
Investigation of Fixed-Point Computation Influermre Numerical Solutions of Fractional Differentiatjiations

Different approach can be seen in the work of Pod- @=15 m=100
lubny (2000). Method presented there formulates [ S S B S
the problem of numerical solution as a system oédr ol |
algebraic equations solving the fractional diffdiain ' Moo : L
equations in all points of the interval simultansigu i, ST . v
That approach has many benefits, but is not adequat S B
for series signal processing. T Y | T naltea salon
As it can be seen, when changimgalsoh is changed ) L ; —
which can cause FWL effects. In the next sectianlib- 0Ef .
haviour of numerical solution of fractional differigal oo P
equat|on Obtalned W|th (16) behaves Whel’l Changm‘g p Qdfdi e ...... L .............. ..... .........
rameters. S Lo
02
6. FLOATING-POINT ARCHITECTURE 3 3 s+ & 7 & 3 1
SIMULATIONS t

Fig. 2. Comparison of analytical and numerical solution

. . . of fractional differential equation (19) witi+3/2
In order to perform simulational analysis of thduso

form=100
tion of fractional differential equation the folling ex-
ample needs to be considered.
Example 1. (Kaczorek (2008b)) The unit step response y @ =15 m=500
of the following system is considered ' S
da 12 ....................................................................
— X(t) = =x(t) +u(t)
dta Tho L
X(O) = OD R (19) 08 : Anal\tica\.sululiu.n
0t =10) B e e  Namonca st |
From (3) the Solutlon IS DB .......................................................................
t
X(t) = J‘o(t _ Z.)O’—l Ea’g (_(t _ T)O’ )dT - D b gD
t I8 25 T A S O S S —
rw (1)K skaL N B e N RN
= - = t
Ok=0 Mak+1)) (20) Fig. 3. Comparison of analytical and numerical solution
© _1\K f fractional differential equation (19) with=3/2
1 t _ 0 q
_ D 1) J Sak+a-lye for m=500
=0 MNak+1))Jo
s k a(k+l
= Z 1) e =t9E, g4y (-t7) The step response was expressed by Mittag-Leffler
i Mak+1) a(k+1) ’ function (6) It should be noted that fer> 1 initial condi-
tions for alln < @ need to be specified.
» @=15m=10 Obtained analytical solution can be used for veaifi
' o tion of correctness of (16). System with= 3/2 is con-
12l | sidered. Comparisons are made for differ@ntComputa-
5 tions were performed in Matlab in double precisidna-
1 e lytical solution consisted of 100 first expressioinpower
T series form of Mittag-Leffler function (6). The dpsis
tg_a .............................. + Numerical salution | was performed on |nterva|€ [0‘ 10]
) : P It should be noted that far > 1 solutions have oscil-
o 1 latory character. Solution consisting of 10 poi(fsy. 1)
o ! . represents the oscillations but it happens in difie mo-
L LU O OO SEUUOOE SN SO S ment and with much smaller amplitude. Increasinecpr
0 1 R N W WO VO O WS W sion to 100 points the solution improves (Fig. &)d for
500 points (Fig. 3) numerical solution becomesytibse
0 S S T R R S to an analytical one. It should be noted that iasheg

; number of points in the interval the requirememiward
solutions increase, as in every step of computadibthe

Fig. 1. Comparison of analytical and numerical solution .
earlier ones are necessary.

of fractional differential equation (19) with=3/2
for m=10
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7. FIXED POINT ARCHITECTURE SIMULATIONS

For numerical experiments Matlab environment was
used with the Fixed-Point Toolbox. With this softea
one can create and use variables with desired {eogths
in bits. These simulations were performed for step
sponse of system (19). Numerical method (16) wasl us
and number of steps per interval was setnte= 100.
Compared are:

— analytical solution;

— numerical solution using method (16) operating with
floating-point arithmetic;

— numerical solution using method (16) operating with
fixed-point arithmetic.

In the last case a fixed point notation allowingeap
tion on numbers with nonzero fractional part. Thaeen-
bers are coded with use of two's complement code (s
Biernat(2001); Pochopi€2004)). Thanks to using it scal-
ing could be avoided. Figure 4 presents the forofdhis
fixed-point notation.

Decimal Point

| 2IL-CI.| L2 |
L,

| o | 7 2-1| 92 | |2-I:FL-CI.12-FL|

s
Integer Part

'
Fractional Part

Fig. 4. Fixed point notation during the experiments

=15, m=100,WL=10 FL=3
14 . . : T T ‘ T

Analitical solution
+  Floating-point solution
: : : +  Fixedpoint solution
i} i | I i 1 T T T T
0 1 2 3 4 5 5} 7 8 9 10
t

Fig. 5. System unit step response (FL=8)

02

Corresponding to the Fig. 4 following quantitiesreve
introduced:

- FL denotes number of bits devoted to the fractional
part,

- IL denotes number of bits devoted to the integet, pa

- total number of bits in the data word was

WL=IL+FL.

It was decided to use a single word length foredd:
ments of the algorithm. That means that both systeei-
ficients, constants associated withand number of steps
and system state were denoted in variables witrséimee
word length and the same lengths of fractional iateger

parts.

Nine numerical

acta mechanica et automatica, vol.5 n0.2(2011)

experiments were performed,
in which step response of system (19) was computed.

In every experiment the word length for the frantibpart
was increased by one from 8 to 16 bits. The maqgstere
sentative were the results obtained for fractiopatts
of 8, 9, 10, 12 and 16 bits. For all the experimelht=2

was set.

o=1.5 m=100, WL=11 FL=9

Analitical solution
+  Floating-point solution

+  Fixed-point solution
T T T

1 2 3 4 5 B 7 ] 9 10

Fig. 6. System unit step response (FL=9)

=15, m=100,WL=12, FL=10

02

Analitical solution
+  Floating-point solution

+  Fixed-point solution
T T T

1 2 3 4 5 B 7 g 9 10

Fig. 7. System unit step response (FL=10)

=15 m=100, WL=16, FL=14

Analitical solution
+  Floating-point solution

+  Fixed-point solution
T T T

1 2 3 4 5 B 7 g 9 10

Fig. 8. System unit step response (FL=14)
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=15 m=100, WL=18,FL=16

Analitical solution
+  Floating-point solution
+  Fixed-point solution

T T T

S T T S B B =
o 1+ 2 3 4 5 6 7T B 9

10

Fig. 9. System unit step response (FL=16)

Results of simulations are presented in Figs. &, @
and 9. In the figures three responses are presented
analytical, computed numerically with floating-pbin
and computed numerically with fixed point.

Coefficients, m=100,WL="14, FL=12

+ +  Analitical solution
+  Fixed-point solution
0k 2
+
+
2
1w + 4
= +
R
N
5 10°F Hhy 4
T R
=1 e
[T e,
107k N""‘» 4
”‘N-«
10* \\;
1075 1 1 L 1 1 L 1 1 1
] 10 20 30 40 50 60 70 a0 20 100

Fig. 10. Coefficient values for WL=14

Coefficients, m=100,WL=18, FL="16

+ +  Analitical solution
+  Fixed-point solution

+
+
+
e
+
"
%

Coefficient - g,

a0

Fig. 11. Coefficient values for WL=18

Analysis of the figures, allows to observe, thatue
tion of fractional part word length increases thenerical
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error of such computed fractional part. For FL=8& ()
the response differs so much that it loses itsimaigchar-
acter.

Further study allowed to find one of the reasons
for substantial differences between analytical,afilog-
point and fixed-point solutions. It appears thathas
a strong connection to the coefficients (18). In Fig. 10
and 11 values of coefficients computed analytically and
numerically with application of fixed point arithitie
with different word lengths. Vertical axes in thdggures
are in the logarithmic scale for easier observatibrihe
effects.

For word length WL=14 the effect of quantisation
is evidently visible for coefficients with indexeater than
13. Moreover coefficients with index greater thahtBey
become equivalent to zero, regardless that analigic
they are different from zero. For word length WL=18
the similar effect is visible, however quantisatisnvisi-
ble for indices greater than 34 and they become #ar
indices greater than 80. Coefficients equal to z®not
visible in the plot, as 0 does not belong to thendm
of algorithm.

It should be noted, that this effect causes qualga
change in the system character. From the system
with potentially infinite memory it becomes a syste
with finite memory. It should be compared with piac
cally stable discrete fractional systems (see fangple
Kaczorek(2011)).

8. CONCLUSIONS

After analysis of results of numerical experiments
it can be concluded, that main reasons for errocsiwing
when using fixed-point arithmetic are the quant@atnd
rounding of coefficients (18). In figures it can lod-
served, that for analysed systems these coeffiiang
reduced along with index. For small values thiseetff
is especially visible. Below certain value (certamuex)
guantisation reduces them to zero. Simulationstithted,
that the errors caused by using fixed-point arittiecnean
significantly change the response of analysed gyste
Word length should be then chosen very carefully.
In further works the possibility of using differemtord
lengths for coefficients and state. Additional nfadition
of numerical method should be considered in oraer t
increase robustness to these errors.

It should be also noted, that zeroing of coeffitsetue
to fixed-point computation leads to system withitén
memory. It is very similar to practically stablesdiete
fractional systems. It is interesting how other pedies
of these systems transfer to analysed systems.

REFERENCES

1. Biernat J. (2001),Metody i uktady arytmetyki komputerowej
Oficyna Wydawnicza Politechniki Wroctawskiej, Wraat.
Bustowicz M. (2008),Frequency domain method for stability
analysis of linear continuous-time fractional sysgeln Mali-
nowski K. and Rutkowski L. editors, Recent advanoesn-
trol and automation, chapter 2, pages 83-92, AkadenOfi-
cyna Wydawnicza EXIT, Warszawa.



10.

11.

12

13.

14.

15.

16.

17.

.Lederman C.,

Djouambi A. B., Charef A. F., Besancon A. V.(2007),
Optimal approximation, simulation and analog reslon
of the fundamental fractional order transfer fuocti Int. J.
Appl. Math. Comput. S¢il7(4):455-462.

Dzielinski A., Sierociuk D. (2008), Obserwator zredukowany
dla dyskretnych uktadéw utamkowegoedr, In Malinowski
K. and Rutkowski L., editors, Sterowanie i Automaga:
Aktualne problemy i ich rozwiania, chapter 2, pages 66-75.
Akademicka Oficyna Wydawnicza EXIT.

Gevers M., Li G. (1993),Parametrizations in Control, Esti-
mation, and Filtering Problems: Accuracy Aspe@gringer-
Verlag, London.

Hairer E., Ngrsett S. P., Wanner G.(2000), Solving Ordi-
nary Differential Equations: | Nonstiff problemSpringer..
Kaczorek T. (2008a), Practical stability of positive fractibna
discrete-time linear systemBulletin of the Polish Academy
of Sciences Technical Science6(4):313-317.

Kaczorek T. (2008b), Fractional positive linear systems and
electrical circuits,Materiaty XXXI Mgdzynarodowej konfe-
rencji z podstaw elektrotechniki i teorii obwodéw SPETQ
3-4, Ustra , 28-31.05.2008.

Kaczorek T. (2011), Positive fractional linear system®&o-
miary Automatyka Robotyka, 2:91--112.

Kalinowski T., Bustowicz M. (2011), Odporna stabil§é
rodziny wielomianéw niecatkowitego stopnia o wsadteni-
kach wieloliniowo zalenych od niepewnych parametréw,
Pomiary Automatyka Robotyk2a576-585.

Klamka J. (2009), Controllability and minimum energy con-
trol problem of infinite dimensional fractional diete-time
systems with delayfroceedings of 2009 First Asian Confe-
rence on Intelligent Information and Database Syse
398-403.

Roquejoffre J. M., Wolanski N.(2002),
Mathematical justification of a nonlinear integrifferential
equation for the propagation of spherical flam&s,R. Math.
Acad. Sci. Paris334(7):569—574.

Magin R., Ortigueira M. D., Podlubny I., Trujillo J.
(2011), On the fractional signals and systems. &ign
Processing,Advances in Fractional Signals and Systems
91(3):350 - 371.

Miller K. S., Ross B.(1993),An introduction to the fractional
calculus and fractional differential equatigndohn Wiley
& Sons Inc., New York.

Oldham K. B., Spanier J.(1974),The fractional calculus
Academic Press [A subsidiary of Harcourt Brace Jovam,
Publishers], New York-London.

Ortigueira M. D. (2008), An Introduction to the Fractional
Continuous-Time Linear Systems: The 21st Centuryedyst
IEEE Circuits and Systems Magazi®¢3):19-26.

Ostalczyk P.(2008),Zarys rachunku réniczkowo-catkowego
utamkowych rzdéw. Teoria i zastosowania w automatyce
Wydawnictwo Politechniki £ 6dzkiej.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

acta mechanica et automatica, vol.5 n0.2(2011)

Piatek P. (2007),Wykorzystanie specjalizowanych architektur
sprztowych do realizacji krytycznych czasowo zad&ero-
wania, Application of Specialized Hardware Architeetifor
Realization of Time-critical Control TaskRozprawa doktor-
ska, Promotor: W. Grega, Akademia Gorniczo-Hutnicza
im. Stanistawa Staszica, Wydziat Elektrotechnikijtématy-
ki, Informatyki i Elektroniki, Krakéw.

Pochopiei B. (2004), Arytmetyka w systemach cyfrowych
Akademicka Oficyna Wydawnicza EXIT, Warszawa.
Podlubny 1. (1999), Fractional differential equations. An
introduction to fractional derivatives, fractiondifferential
equations, to methods of their solution and somtheif ap-
plications, volume 198 dflathematics in Science and Engi-
neering Academic Press Inc., San Diego, California.
Podlubny 1. (2000), Matrix approach to discrete fractional
calculus Fractional Calculus and Applied Analysis,
3(4):359--386.

Ruszewski A. (2008), Stabilization of Fractional-order
Strejc's process model with time delay using fractieorder
PI controller, In Malinowski, K. and Rutkowski, L., editors,
Recent advances in control and automation, chaptpages
103-113. Akademicka Oficyna Wydawnicza EXIT, Warsza
wa, 2008.

Samko S., Kilbas A., Marichev 0.(1993, Fractional Inte-
grals and derivatives: Theory and Applicatipn&ordon
and Breach Science Publishers.

Sobolewski A., Ruszewski A(2011), Realizacja praktyczna
regulatora niecatkowitego ¢du, Pomiary Automatyka Robo-
tyka, 2:586-594.

Swider Z. (2002), Redukcja béw zaoksglen w ukladzie
sterowania niewrdiwym na zaktdcenie periodyczndjate-
riaty XIV Krajowej Konferencji AutomatykiZielona Gora,
537-542.

Swider Z. (2003),Realizacje cyfrowe algorytméw sterowania
i filtracji, Oficyna Wydawnicza Politechniki Rzeszowskiej,
Rzeszow, 2003.

Weilbeer M. (2005), Efficient Numerical Methods for Frac-
tional Differential Equations and their AnalyticBackground
PhD thesis, Technischen Universitat Braunschweig.

Wiatr K. (2003), Akceleracja oblicz& w systemach wizyj-
nych WNT, Warszawa.

Work partially financed by National Centre of Scienfunds
for 2011-2013 as a research project. Contract Me5N4 644440.

107



