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Abstract: This paper deals with the control of the fractieaader nonlinear systems. A list of the controbastgies as well
as synchronization of the chaotic systems is ptedern illustrative example of sliding mode cohn8MC) of the frac-
tional-order (commensurate and incommensuratehiahsystem is described and commented togethértih simulation

results.

1. INTRODUCTION

Control of nonlinear systems, especiatijaotic sys-
tems was the subject of intensive studies in the fast
decades. As noted (Andrievskii and Fradkov, 20@®42,
several thousand publications have appeared ogaettent
decade. It is due to the fact that chaotic behawias dis-
covered in numerous systems in mechanics, laseraatid
physics, hydrodynamics, chemistry, biology and ried,
electronic circuits, economical systems, etc. (deetras,
2011)). For this reason a natural question ariddew can
we control chaotic systers

The first important thing is that we need the mathg-
cal formulation of chaotic processes by the bastdels
of the chaotic systems that are used. The mostl@oma-
thematical models used in the literature on corgfathaos
are represented by the systems of ordinary diffedesqua-
tions. In some works we can also find discrete rfode-
fined by difference state equations. The seconditapt
thing is the formulation of the problems of contodlchao-
tic processes. An important type of problems oftin
of chaotic processes is represented by the motiifica
of the attractors, for example, transformation ofatic
oscillations into periodic and so on.

2. FRACTIONAL-ORDER NONLINEAR SYSTEMS

In this paper, we will consider the general incomse
rate fractional-order nonlinear system represerasdol-
lows:

oDIX (1) = £ (%D, %(9..... % (D9 )
x(0)=¢g, i=1,2,.. n,
wherec; are initial conditions. The vector form of (1) is:
D% = f(x), 2

whereq = [ay, G, ..., G]' for 0<q <2, (i =1, 2, ...,n)
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and x(OR", and wherg D/ is the Caputo's derivative.

The Caputo's definition of fractional derivativeancbe
written as (Podlubny, 1999):

1 ¢ 7@ _ 3
Fm=q gy 47 Mo<a<m @

In Eqg. (3) we assume bounday 0. Other definitions
of the fractional derivative can be found in (Pdutly,
1999).

D () =

3. SYNCHRONIZATION OF CHAQOTIC SYSTEMS

The important class of the control objectives cerre
ponds to the problems of synchronization or, more- p
cisely, controllable synchronization as opposedthe
autosynchronization. Numerous publications on adntr
of synchronization of chaotic processes and itdiegion
in the data transmission systems appeared in t88'4.9
Inthe general case, by the synchronization is mean
the coordinated variation of the states of two ooren
systems or, possibly, coordinated variation of some
of their characteristics such as oscillation fretpies.

Let us take a look at the synchronization moreeadios
Several methods can be used for synchronizatiarha6-
tic systems. In this paragraph we will mention éhweell-
known methods. If chaos synchronization is achielgd
drive-response systems, the instability measuraeiga-
tive. That means the system is not chaotic.

The first method is the Master-Slave (or drive-
response) configuration scheme of two autonomous-
dimensional fractional-order chaotic systems (LOD2,
Peng, 2007):

d7x

Mo T T @)
dox_ - .
CX= 19+ e,



where g =(a,,q,,...,a,)0R", a, >0, is the fractional

order and the systems are chao@icis a coupling matrix.
For simplicity, letC have the form:C =diag(d, d,,..., q).

where d >0. The error ise= x— % and the aim of the

synchroniziation is to design the coupling matniicls that
[le(®) || Cast - +oo.

The second method is the method for constructing
the drive-response configuration, which was intigetl
by Pecora and Carroll in 1990, known as a (PC). ust
build a PC drive-response configuration in whicldrave
system is given by the fractional-order system KHwitiree
state variables, y, 2 and a response system is given by the
subspace containing tha, (y) variables. Then we can use
the chaotic signat to drive the response subsystem.

The third method is the synchronization via active-
passive decomposition method (APD). Let us buildA\RD
drive-response configuration with a drive systemegi by
the chaotic system and with a response system giyets
replica. Then we can tal#t) as a drive signal (Li et al.,
2006).

Chaos synchronization and its potential application
to secure communications have attracted much mitent
from various disciplines in science and engineesimge
the pioneering work of (Pecora and Carroll, 1990)this
section, we briefly discuss the chaos synchrorirathe-
thods between the chaotic fractional-order systants we
can also mention method via master-slave configurat
with linear coupling (Zhu et al., 2009).

4. CONTROL OF CHAOTIC SYSTEMS

In (Andrievskii and Fradkov, 2003, 2004) were col-
lected and presented several methods used forathieot
of chaotic processes. The authors considered #msichl
integer-order chaotic systems but in general we usa
those methods for the fractional-order chaotic esyst
as well. In addition some other methods have beepgsed
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. Adaptive control assumes the possibility of apalyihe

methods of adaptation to the control of chaotic
processes, where the parameters of the controlead p
are unknown and the information about the modetkstr
ture more often than not is incomplete. A numbethef
existing methods of adaptation such as the methods
of gradient and speed gradient, least squares,nmaxi
likelihood, and so on can be used to develop alyod

of adaptive control and parametric identificatiéncon-
troller is usually designed using the reference ehod
or the methods of linearization by feedback.

. Linearization of the Poincaré map method can beader

lated by the following two key ideas: (i) designiogn-
troller by the discrete system model based on tinaa
tion of the Poincaré map and (ii) using the propert
of recurrence of the chaotic trajectories and dpply
the control action only at the instants when thgttory
returns to some neighborhood of the desired state
or given orbit.

. Time-delayed feedback method considers the problem

of stabilizing an unstable periodic orbit of a rinakr
system by a simple feedback law with time delayste
tivity to the parameter, especially to the delayetj
is a disadvantage of the control law.

. Neural network-based control deals with the ability

of neural networks to control and predict behavior
of nonlinear systems. The various structures ofraleu

networks for control and prediction of the procssse
in nonlinear chaotic systems can be found in lites

. Fuzzy control uses a description of system indetexm

cy in terms of fuzzy models, provides specific i@ns
of the control algorithms, which consists of folodks:
knowledge base, fuzzification, inference and defiizz
cation.

. NEW CHAOS CONTROL STRATEGY

The fractional calculus techniques as for examgtaa

for control of such systems and they can be sunzewri tional differentiator based controller of a fracti integra-

as follows (Petras, 2011): tor based controller can also be used (Tavazoedl.et

1. Open |00p (feed_forward) control is based on ngin 2009) Both of them are particular cases of thetifvaal-
behavior of the nonlinear system under the action order controllers described as (Podlubny, 1999):
of predetermined external input. This approaclingpke _ 1
because it does without any measurements or Sensors u) =K, e+ T, Q')+ T, 0 €t (4,0>0), (5
This is especially important for the control of sdiast
processes.

2. Linear and nonlinear (feed-back) control deals whih
possibilities of using the traditional approachtes] me-
thods of automatic control to the problems of chems
trol are discussed in numerous papers. The deaired
can be reached sometimes even by means of theesimpl 6. EXAMPLE: SLIDING MODE CONTROL OF THE
proportional law of control and feedback. The ptitdn FRACTIONAL-ORDER ECONOMICAL SYSTEM
ities of the dynamic feedbacks can be better redllzy
using the observers. Other methods of the modearyh
of nonlinear control such as the theory of centanim
fold, sliding mode control, the backstepping prageg
the reset control, thesktoptimal design and so on can
be used to solve the problems of stabilization alttoel
given state.

whereK, is the proportional constari; is the integration
constant andy is the differentiation constant. Controller (5)
is more flexible than classical one and gives bea#sults
of the control performances (Monje et al., 2010).

A sliding model control (SMC) strategy is also apg
ble for the fractional-order chaotic systems. Itaiform
of variable structure control method that altees dignamics
of a nonlinear system by application of a high-frecy
switching control. The state feedback control lawvniot
a continuous function of time. It switches from orenti-
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nuous structure to another based on the curreritiqgros

inthe state space. Trajectories always move toward

a switching condition. The motion of the systenitadides
along these boundaries is called a sliding mode. sliding
mode control scheme involves: (i) selection of #iding
surface that represents a desirable system dyraghevior,
(i) finding a switching control law that a slidingode ex-
ists on every point of the sliding surface.

Consider the following general structure of thecfian-
al-order nonlinear system under control

oDIx(1) = f(X(1) + BU(Y, (6)

whereu(t) = [uy()ux(t)...un(t)]" is anm-dimensional input
vector that will be used and the following contstiucture
will be considered for state feedback:
U(t) = U () + U (D, ()
where Ug(t) is the equivalent control ands(t) is the
switching control of the system (6). A common tasko
design a state feedback control law to stabilizedynami-
cal system (6) around the origitt) = [0, O, ..., O]. In the
sliding mode, the sliding surface and its derivatiwmust
satisfy o(t) = 0 andg(t) = 0.

Let us use the controlled fractional-order finahsigs-
tem in the form (Dadras and Momeni, 2010):

oD, (1) = %,(1) + (%0 - 8 (1,
oD2X,(1) =1=bx, () = X () + WY,
0 DBx,(1) = =, (1) — (D,
wherea is the saving amounhk is the cost per investment,

and c is the elasticity of demand of commercial market,
(a,b,00R and (a,b,c)>0. The state variables(t),

Xo(t), andxs(t) are the interest rate, the investment demand,
and the price index, respectively.
The proposed fractional sliding surface is defiasd

©)

(8)

o (1) = [{0¢ (1) + K (D) o+, (1,

whereK is a positive constant, in additidf = K¢, The
equivalent controlie(t) is obtained by setting the derivative
of sliding surface to zero and then solving theosdcequa-
tion of (8) foru(t). We obtain

0 thzxz(t) = _(Xf(t) + sz(t))

and then we get the relation

Ugq (1) =0 D2 %,(1) =1+ b, (9 + X (9
= =04 (1) + K% (1) =1+ bx, (9 + X (9
= (b= Ke)% (D -1,

whereKq is the constant of the controller.
The switching controli,(t) law is chosen in order to sa-
tisfy the sliding condition

u,(t) = K,,signo),

(10)

(11)
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where
+1 :0>0,
sign(o)=<0 :0=0,
-1 :0<0,

andKg, is the gain of the controlleK(,< 0). Finally, the
total control law is defined as follows:

U(t) = Uy () + Uy, (9 = (b= K % (9 -1+ K, sigrio).(12)

We assume the following parameters of the chagte s
tem (8):a=1,b=0.1,c =1, and the controller (12) para-
meters, experimentally foundeq = 1.5 andK, = -3.5.
The controller will be applied at= 30s. In the first case we
use a commensurate order of derivatiges g, = gz = 0.9
and in the second case we use an incommensurage ord
of the derivatives); = 1.0,0, = 0.95, andg; = 0.99 of the
fractional-order chaotic system (8). The initialndd@ions
for both cases arey(0), xx(0), x3(0)) = (2, -1, 1).
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Fig. 1. Controlled state variableg(t), x»(t), andx(t)
of commensurate fractional-order financial system,
where the SMC was activated at80
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Fig. 2. Time response of control lawt)
for commensurate fractional-order system
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Fig. 3. Controlled state variableg(t), x»(t), andx(t)

of incommensurate fractional-order financial system

where the SMC was activated ats80
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Fig. 4. Time response of control lawt)
for incommensurate fractional-order system
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Fig. 5.Time responses of sliding surfac#s)

In Fig. 1 are depicted the controlled state vadabl
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of the commensurate fractional-order financial eyst (8)
with the parametersa = 1, b = 0.1, ¢ = 1, orders
01 = g2 = gz = 0.9, controller (12) parametery, = 1.5
and K, = -3.5, initial conditions: > (0), xx(0),

x3(0)) = (2, -1, 1) for simulation tim&g;,, = 90 s and time
steph = 0.005

In Fig. 2 is shown the control law of commensufede-
tional-order financial system which drives the epststates
to the sliding surface. We can observe chatteringhie
sliding mode.

In Fig. 3 are depicted the controlled state vadabl
of the incommensurate fractional-order financiabtsys
(8) with the parametera = 1, b = 0.1, c = 1, orders
0: = 1.0,g, = 0.95, andgz = 0.99, controller (12) parame-
ters: Keg = 1.5 andK, = -3.5, initial conditions: X;(0),
x2(0), x3(0)) = (2, -1, 1) for simulation timdg, = 90 s
and time stefn = 0.005.

In Fig. 4 is shown the control law of incommenserat
fractional-order financial system which drives thgstem
states to the sliding surface. We can again obserager-
ing in the sliding mode.

In Fig. 5 are depicted the time responses of tikngl
surface. We can observe that the controller keptststem
states on the sliding surface for all subsequerd.ti

Performed simulations show that system responses af
applying the control law (12) are satisfactory ffoth cases.
The results confirm that obtained control stratégeffi-
cient for controlling the fractional-order finantgystem (8)
for various parameters (Petra$ and Bednarova, 2010)

7. CONCLUSIONS

In this article is presented a review of the cdrgtoate-
gies for the fractional-order nonlinear systems. ilistra-
tive example is shown the SMC control method. Tdue-
trol method is simple and control law achieved gstyti-
cally stabilized system if the controller is apglito the
investment demand in order to control the wholeneou-
cal system. This approach is applicable for diff¢rypes
of the fractional-order chaotic systems as welthesother
control strategies (Monje et al., 2010).
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