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Abstract: This paper deals with the control of the fractional-order nonlinear systems. A list of the control strategies as well 
as synchronization of the chaotic systems is presented. An illustrative example of sliding mode control (SMC) of the frac-
tional-order (commensurate and incommensurate) financial system is described and commented together with the simulation 
results. 

 

1. INTRODUCTION  

Control of nonlinear systems, especially chaotic sys-
tems, was the subject of intensive studies in the last few 
decades. As noted (Andrievskii and Fradkov, 2003, 2004), 
several thousand publications have appeared over the recent 
decade. It is due to the fact that chaotic behavior was dis-
covered in numerous systems in mechanics, laser and radio 
physics, hydrodynamics, chemistry, biology and medicine, 
electronic circuits, economical systems, etc. (see (Petráš, 
2011)). For this reason a natural question arises: “How can 
we control chaotic systems?” 

The first important thing is that we need the mathemati-
cal formulation of chaotic processes by the basic models 
of the chaotic systems that are used. The most popular ma-
thematical models used in the literature on control of chaos 
are represented by the systems of ordinary differential equa-
tions. In some works we can also find discrete models de-
fined by difference state equations. The second important 
thing is the formulation of the problems of control of chao-
tic processes. An important type of problems of control 
of chaotic processes is represented by the modification 
of the attractors, for example, transformation of chaotic 
oscillations into periodic and so on. 

2. FRACTIONAL-ORDER NONLINEAR SYSTEMS 

In this paper, we will consider the general incommensu-
rate fractional-order nonlinear system represented as fol-
lows:  
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where ci are initial conditions. The vector form of (1) is: 
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tD  is the Caputo's derivative. 

The Caputo's definition of fractional derivatives can be 
written as (Podlubny, 1999): 
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In Eq. (3) we assume boundary a = 0. Other definitions 
of the fractional derivative can be found in (Podlubny, 
1999).  

3. SYNCHRONIZATION OF CHAOTIC SYSTEMS 

The important class of the control objectives corres-
ponds to the problems of synchronization or, more pre-
cisely, controllable synchronization as opposed to the 
autosynchronization. Numerous publications on control 
of synchronization of chaotic processes and its application 
in the data transmission systems appeared in the 1990's. 
In the general case, by the synchronization is meant 
the coordinated variation of the states of two or more 
systems or, possibly, coordinated variation of some 
of their characteristics such as oscillation frequencies. 

Let us take a look at the synchronization more closely. 
Several methods can be used for synchronization of chao-
tic systems. In this paragraph we will mention three well-
known methods. If chaos synchronization is achieved by 
drive-response systems, the instability measure is nega-
tive. That means the system is not chaotic. 

The first method is the Master-Slave (or drive-
response) configuration scheme of two autonomous-
dimensional fractional-order chaotic systems (Lu, 2005; 
Peng, 2007): 
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where 
1 2= ( , , , ) n

n Rα α α α ∈…
, > 0iα , is the fractional 

order and the systems are chaotic. C is a coupling matrix. 
For simplicity, let C have the form: 

1 2= ( , , , )nC diag d d d…
, 

where 0id ≥ . The error is =e x x− ɶ  and the aim of the 

synchroniziation is to design the coupling matrix such that 
|| ( ) || 0e t →  as t → +∞ . 

The second method is the method for constructing 
the drive-response configuration, which was introduced 
by Pecora and Carroll in 1990, known as a (PC). Let us 
build a PC drive-response configuration in which a drive 
system is given by the fractional-order system (with three 
state variables: x, y, z) and a response system is given by the 
subspace containing the (x, y) variables. Then we can use 
the chaotic signal z to drive the response subsystem. 

The third method is the synchronization via active-
passive decomposition method (APD). Let us build an APD 
drive-response configuration with a drive system given by 
the chaotic system and with a response system given by its 
replica. Then we can take s(t) as a drive signal (Li et al., 
2006). 

Chaos synchronization and its potential application 
to secure communications have attracted much attention 
from various disciplines in science and engineering since 
the pioneering work of (Pecora and Carroll, 1990). In this 
section, we briefly discuss the chaos synchronization me-
thods between the chaotic fractional-order systems and we 
can also mention method via master-slave configuration 
with linear coupling (Zhu et al., 2009). 

4. CONTROL OF CHAOTIC SYSTEMS 

In (Andrievskii and Fradkov, 2003, 2004) were col-
lected and presented several methods used for the control 
of chaotic processes. The authors considered the classical 
integer-order chaotic systems but in general we can use 
those methods for the fractional-order chaotic systems 
as well. In addition some other methods have been proposed 
for control of such systems and they can be summarized 
as follows (Petráš, 2011):   
1. Open loop (feed-forward) control is based on varying 

behavior of the nonlinear system under the action 
of predetermined external input. This approach is simple 
because it does without any measurements or sensors. 
This is especially important for the control of superfast 
processes.  

2. Linear and nonlinear (feed-back) control deals with the 
possibilities of using the traditional approaches, and me-
thods of automatic control to the problems of chaos con-
trol are discussed in numerous papers. The desired aim 
can be reached sometimes even by means of the simple 
proportional law of control and feedback. The potential-
ities of the dynamic feedbacks can be better realized by 
using the observers. Other methods of the modern theory 
of nonlinear control such as the theory of center mani-
fold, sliding mode control, the backstepping procedure, 
the reset control, the H∞-optimal design and so on can 
be used to solve the problems of stabilization about the 
given state.  

3. Adaptive control assumes the possibility of applying the 
methods of adaptation to the control of chaotic 
processes, where the parameters of the controlled plant 
are unknown and the information about the model struc-
ture more often than not is incomplete. A number of the 
existing methods of adaptation such as the methods 
of gradient and speed gradient, least squares, maximum 
likelihood, and so on can be used to develop algorithms 
of adaptive control and parametric identification. A con-
troller is usually designed using the reference model 
or the methods of linearization by feedback.  

4. Linearization of the Poincaré map method can be formu-
lated by the following two key ideas: (i) designing con-
troller by the discrete system model based on lineariza-
tion of the Poincaré map and (ii) using the property 
of recurrence of the chaotic trajectories and applying 
the control action only at the instants when the trajectory 
returns to some neighborhood of the desired state 
or given orbit.  

5. Time-delayed feedback method considers the problem 
of stabilizing an unstable periodic orbit of a nonlinear 
system by a simple feedback law with time delay. Sensi-
tivity to the parameter, especially to the delay time, 
is a disadvantage of the control law.  

6. Neural network-based control deals with the ability 
of neural networks to control and predict behavior 
of nonlinear systems. The various structures of neural 
networks for control and prediction of the processes 
in nonlinear chaotic systems can be found in literature.  

7. Fuzzy control uses a description of system indetermina-
cy in terms of fuzzy models, provides specific versions 
of the control algorithms, which consists of four blocks: 
knowledge base, fuzzification, inference and defuzzifi-
cation. 

5. NEW CHAOS CONTROL STRATEGY 

The fractional calculus techniques as for example a frac-
tional differentiator based controller of a fractional integra-
tor based controller can also be used (Tavazoei et al., 
2009). Both of them are particular cases of the fractional-
order controllers described as (Podlubny, 1999):  

0 0( ) = ( ) ( ) ( ),   ( , > 0),p i t d tu t K e t T D e t T D e tλ δ λ δ−+ +  (5) 

where Kp is the proportional constant, Ti is the integration 
constant and Td is the differentiation constant. Controller (5) 
is more flexible than classical one and gives better results 
of the control performances (Monje et al., 2010).  

6. EXAMPLE: SLIDING MODE CONTROL OF THE 
FRACTIONAL-ORDER ECONOMICAL SYSTEM 

A sliding model control (SMC) strategy is also applica-
ble for the fractional-order chaotic systems. It is a form 
of variable structure control method that alters the dynamics 
of a nonlinear system by application of a high-frequency 
switching control. The state feedback control law is not 
a continuous function of time. It switches from one conti-
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nuous structure to another based on the current position 
in the state space. Trajectories always move toward 
a switching condition. The motion of the system as it slides 
along these boundaries is called a sliding mode. The sliding 
mode control scheme involves: (i) selection of the sliding 
surface that represents a desirable system dynamic behavior, 
(ii) finding a switching control law that a sliding mode ex-
ists on every point of the sliding surface. 

Consider the following general structure of the fraction-
al-order nonlinear system under control  
 

0 ( ) = ( ( )) ( ),q
tD x t f x t Bu t+  (6) 

 

where u(t) = [u1(t)u2(t)...um(t)]T is an m-dimensional input 
vector that will be used and the following control structure 
will be considered for state feedback:  
  

( ) = ( ) ( ),eq swu t u t u t+  (7) 
 

where ueq(t) is the equivalent control and usw(t) is the 
switching control of the system (6). A common task is to 
design a state feedback control law to stabilize the dynami-
cal system (6) around the origin x(t) = [0, 0, …, 0]T. In the 
sliding mode, the sliding surface and its derivative must 
satisfy σ(t) = 0 and ( ) = 0tσɺ . 

Let us use the controlled fractional-order financial sys-
tem in the form (Dadras and Momeni, 2010): 
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where a is the saving amount, b is the cost per investment, 
and c is the elasticity of demand of commercial market, 
( , , )a b c R∈  and ( , , ) 0a b c > . The state variables x1(t), 

x2(t), and x3(t) are the interest rate, the investment demand, 
and the price index, respectively. 

The proposed fractional sliding surface is defined as  
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where K is a positive constant, in addition K = Keq. The 
equivalent control ueq(t) is obtained by setting the derivative 
of sliding surface to zero and then solving the second equa-
tion of (8) for u(t). We obtain  
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and then we get the relation 
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where Keq is the constant of the controller. 
The switching control usw(t) law is chosen in order to sa-

tisfy the sliding condition  
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and Ksw is the gain of the controller (Ksw < 0). Finally, the 
total control law is defined as follows: 
 

2( ) = ( ) ( ) = ( ) ( ) 1 ( ).eq sw eq swu t u t u t b K x t K signσ+ − − + (12) 
 

We assume the following parameters of the chaotic sys-
tem (8): a = 1, b = 0.1, c = 1, and the controller (12) para-
meters, experimentally found: Keq = 1.5 and Ksw = -3.5. 
The controller will be applied at t = 30 s. In the first case we 
use a commensurate order of derivatives q1 = q2 = q3 = 0.9 
and in the second case we use an incommensurate order 
of the derivatives q1 = 1.0, q2 = 0.95, and q3 = 0.99 of the 
fractional-order chaotic system (8). The initial conditions 
for both cases are (x1(0), x2(0), x3(0)) = (2, -1, 1). 

 
Fig. 1. Controlled state variables x1(t), x2(t), and x3(t)  

of commensurate fractional-order financial system,  
where the SMC was activated at 30 s 

 
Fig. 2. Time response of control law u(t)  

for commensurate fractional-order system 
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Fig. 3. Controlled state variables x1(t), x2(t), and x3(t)  

of incommensurate fractional-order financial system, 
where the SMC was activated at 30 s 

 
Fig. 4. Time response of control law u(t)  

for incommensurate fractional-order system 

 
Fig.  5. Time responses of sliding surfaces σ(t) 

 
In Fig. 1 are depicted the controlled state variables 

of the commensurate fractional-order financial systems (8) 
with the parameters: a = 1, b = 0.1, c = 1, orders  
q1 = q2 = q3 = 0.9, controller (12) parameters: Keq = 1.5  
and Ksw = -3.5, initial conditions: (x1(0), x2(0),  
x3(0)) = (2, -1, 1) for simulation time Tsim = 90 s and time 
step h = 0.005. 

In Fig. 2 is shown the control law of commensurate frac-
tional-order financial system which drives the system states 
to the sliding surface. We can observe chattering in the 
sliding mode. 

In Fig. 3 are depicted the controlled state variables 
of the incommensurate fractional-order financial systems 
(8) with the parameters: a = 1, b = 0.1, c = 1, orders  
q1 = 1.0, q2 = 0.95, and q3 = 0.99, controller (12) parame-
ters: Keq = 1.5 and Ksw = -3.5, initial conditions: (x1(0), 
x2(0), x3(0)) = (2, -1, 1) for simulation time Tsim = 90 s 
and time step h = 0.005. 

In Fig. 4 is shown the control law of incommensurate 
fractional-order financial system which drives the system 
states to the sliding surface. We can again observe chatter-
ing in the sliding mode. 

In Fig. 5 are depicted the time responses of the sliding 
surface. We can observe that the controller kept the system 
states on the sliding surface for all subsequent time. 

Performed simulations show that system responses after 
applying the control law (12) are satisfactory for both cases. 
The results confirm that obtained control strategy is effi-
cient for controlling the fractional-order financial system (8) 
for various parameters (Petráš and Bednárová, 2010). 

7. CONCLUSIONS 

In this article is presented a review of the control strate-
gies for the fractional-order nonlinear systems. On illustra-
tive example is shown the SMC control method. This con-
trol method is simple and control law achieved asymptoti-
cally stabilized system if the controller is applied to the 
investment demand in order to control the whole economi-
cal system. This approach is applicable for different types 
of the fractional-order chaotic systems as well as the other 
control strategies (Monje et al., 2010). 
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