PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical Evaluation of Fractional Differ-Integral of Some Elementary Functions via Inverse Transformation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents methods of calculating fractional differ-integrals numerically. We discuss extensively the pros and cons of applying the Riemann-Liouville formula, as well as direct approach in form of The Grünwald-Letnikov method. We take closer look at the singularity, which appears when using classical form of Riemann-Liouville formula. To calculate Riemann-Liouville differ-integral we use very well-known techniques like The Newton-Cotes Midpoint Rule. We also use two Gauss formulas. By implementing transformation of the core integrand of Riemann-Liouville formula (we called it “the inverse transformation”), we would like to point the possible way of reducing errors when calculating it. The core of this paper is the subject of reducing the absolute error when calculating Riemann-Liouville differ-integrals of some elementary functions; we use our own C++ programs to calculate them and compare obtained results of all methods with, where possible, exact values, where not – with values obtained using excellent method of integration incorporated in Mathematica. We will not discuss complexity of numerical calculations. We will focus solely on minimization of the absolute errors.
Rocznik
Strony
86--95
Opis fizyczny
Bibliogr. 31 poz., Wykr.
Twórcy
autor
Bibliografia
  • 1. Burden R. L., Faires J. D. (2003), Numerical Analysis, 5 th. Ed., Brooks/Cole Cengage Learning, Boston.
  • 2. Carpinteri, F., A. Mainardi [ed.] (1997), Fractals and Fractional Calculus in Continuum Mechanics, Springer Verlag, Wien and New York.
  • 3. Chen Y. Q, Vinagre B. M., Podlubny I. (2004), Continued Fraction Expansion Approaches to Discretizing Fractional Order Derivatives – an Expository Review, Nonlinear Dynamics 38, Kluwer Academic Publishers, 155-170.
  • 4. Deng W. (2007), Short memory principle and a predictorcorrector approach for fractional differential equations. Journal of Computational and Applied Mathematics 206, 174-188.
  • 5. Diethelm K. (1997), An algorithm for the numerical solution of differential equations of fractional order, Electronic Transactions on Numerical Analysis, Vol. 5, 1-6.
  • 6. Gorenflo R. (2001), Fractional Calculus: Some Numerical Methods, CISM Courses and Lectures, Vol. 378, 277 – 290.
  • 7. Kilbas A. A., Srivastava H. M., Trujillo J. J. (2006), Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies 204, Elsevier.
  • 8. Krommer R. A., Ueberhuber Ch. W. (1986), Computational Integration, SIAM, Philadelphia.
  • 9. Kythe P. K., Schäferkotter M. R. (2005), Handbook of Computational Methods For Integration, Chapman & Hall/CRC.
  • 10. Lubich, C. H. (1986), Discretized fractional calculus, SIAM Journal of Mathematica1 Analysis, Vol. 17, 704-719.
  • 11. Machado, J. A. T. (2001), Discrete-time fractional-order controllers, FCAA Journal, Vol. 1, 47-66.
  • 12. Mayoral L. (2006), Testing for fractional integration versus short memory with trends and structural breaks, Dept. of Economics and Business, Universidad Pompeu Fabra.
  • 13. Michalski M. W. (1993), Derivatives of noninteger order and their applications, Dissertationes Mathematicae, CCC XXVIII, Inst. Math. Polish Acad. Sci., Warsaw.
  • 14. Miller, K. S., Ross B. (1993), An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons Inc., New York, USA.
  • 15. Nishimoto K. (1984, 1989, 1991, 1996), Fractional Calculus. Integration and Differentiation of Arbitrary Order, tom I – IV, Descartes Press, Koriyama.
  • 16. Oldham K. B., Spanier J. (1974), The Fractional Calculus, Academic Press, New York.
  • 17. Ooura T. (2008), An IMT-type quadrature formula with the same asymptotic performance as the DE formula, Journal of Computational and Applied Mathematics 213, Elsevier ScienceDirect, 1-8.
  • 18. Ostalczyk P. (2000), The non-integer difference of the discrete-time function and its application to the control system synthesis, International Journal of System Science, Vol. 31, no. 12, 1551-1561.
  • 19. Ostalczyk P. (2001), Discrete-Variable Functions, A Series of Monographs No 1018, Technical University of Łódź, Poland.
  • 20. Ostalczyk P. (2003a), The linear fractional-order discretetime system description”, Proceedings of the 9th IEEE International Conference on Methods and Models in Automation and Robotics, MMAR 2002, Międzyzdroje, T.I, 429 – 434.
  • 21. Ostalczyk P. (2003b), The time-varying fractional order difference equations”, Proceedings of DETC’03, ASME 2003 Design Engineering Technical Conference & Computers and Information in Engineering Conference, Chicago, USA, 1-9.
  • 22. Oustaloup A. (1984), Systèmes Asservis Linéaries d’OrdreFractionnaire, Masson, Paris.
  • 23. Oustaloup A., Cois O., Lelay L. (2005), Représentation et identification par modèle non entire, Hermes.
  • 24. Oustaloup, A. (1995), La dèrivation non entière, Éditions Hermès, Paris, France.
  • 25. Podlubny, I. (1999), Fractional differential equations, Academic Press, San Diego, USA.
  • 26. Sabatier J., Agrawal O. P., Machado T. J. A. [ed.] (2007), Advances in Fractional Calculus. Theoretical Developments and Applications in Physics and Engeneering, Springer Verlag.
  • 27. Samko S., Kilbas A., Marichev O. (1993), Fractional Integrals and derivatives: Theory and Applications, Gordon and Breach, London.
  • 28. Schmidt P., Amsler C. (1999), Test of short memory with trick tailed errors, Michigan State University.
  • 29. Stroud A. H., Secrest D. (1966), Gaussian Quadrature Formulas, Prentice-Hall, Englewood Cliffs, NJ.
  • 30. Taylor J. R. (1996), An Introduction to Error Analysis. The Study of Uncertainties in Physical Measurements, 2nd. Ed., University Science Books.
  • 31. Tuan V. K., Gorenflo R. (1995), Extrapolation to the limit for numerical fractional differentiation, Zeitschrift Angew. Math. Mech., 75, no. 8, 646-648.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0051-0024
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.