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Abstract: The formula for the solution to linear g-differerfcactional-order control systems with finite memds derived.
New definitions of observability and controllabjliare proposed by using the concept of extendeihlirdonditions.
The rank condition for observability is establistzedi the control law is stated.

1. INTRODUCTION

Recently the concept of fractional derivatives alifd
ferences is under strong consideration as a todescrip-
tions of behaviors of real systems. In modeling thel
phenomena authors emphatically use generalizations
of n-th order differences to their fractional forms aswh-
sider the state-space equations of control sysienis-
crete-time, (e.g. Guermah, Djennoune and Bettae08;
Sierociuk and Dziefiski, 2006). Some problems and spe-
cial attempt to the fractionaj-calculus was provided and
presented in Atici and Eloe (2007). The possiblgliaption
of fractional g-difference was proposed by Ortigueira
(2008).

In the generalization of classical discrete-cadéemi
ences to fractional-order differences it is coneahito take
finite summation (see: Kaczorek, 2007; KaczorekQ&0
Guermah, Djennoune and Bettayeb, 2008; Sierociuk an
Dzielinski, 2006). On the other hand there is no good rea-
son for that. The way we use the fractional diffiee does
not introduce any doubt on the initial conditiorolplems
for fractional linear systems in discrete-case. &bwer,
what seems to be one of the greatest phenomensirig u
fractional derivatives and differences in systemsdeting
real behaviors is the initialization of systems. fatt the
initial value problem is an important task in daélgplica-
tions. Recently we can find papers dealing withgheblem
how to impose initial conditions for fractional-ed dy-
namics, (e. g. Ortigueira and Coito, 2007; Lorersw
Hartley, 2009; Atici and Eloe, 2009).

In this paper we deal with-fractional difference con-
trol systems with the initialization by an additérfunction
¢ that vanishes on a time interval with infinitely mya
points. In that way we get only finite number oflues
of initializing function¢ that can be nonzero. We call such
set, stated as the extended vector, [isgemory. Hence
a control system is defined together with initiedg point
of time and length of the memory.

We present the construction of the solutioi-tnemory
initial value problem and discuss the observabiliyd
controllability in s-steps conditions for such system. Some

results concerning the autonomous lingatifference frac-
tional-order system witl-memory were presented in Mo-
zyrska and Pawluszewicz (2010). Although we take
as initial states the extended vectors for theainihemory,

we restrict definition of indistinguishability relan
and observability to those defined farsteps, similarly
asitis proposed in Mozyrska and Bartosiewicz (301
We state the problem in the classical way, usiegdéimk of
observability matrix. For controllability we fornate the
control law using recursively defined Gramian.

The paper is organized as follows. In Section 2 the
foundation of fractional-derivative is presented and it is
showed that forward trajectory of linegrdifference frac-
tional order control system withmemory is uniquely de-
fined. In Section 3 observability problem in finiteemory
domain is stated. Proposition 3.3 gives anotheenth
in Mozyrska and Pawluszewicz (2010), observabilapk
condition. Section 4 presents solution of conthnlity
problem in finite memory domain.

2. FRACTIONAL g-DERIVATIVE AND g-
DIFFERENCE SYSTEMS

Firstly we recall some basic facts connected with
g-difference systems. Lef € (0,1). By g-difference
of a functionf: R — R we mean (see e.g. Jackson, 1910)

bt 0= =10

wheret is any nonzero real number.
k
k_ 91 k-1 ; _
ThenA,t”* = pu t and, ifp(t) = §

k+1

Ap(®) = XR5 ak+1qq—_1_1tk. In the natural way this leads

to the problem of solving-difference equation i with
known functionf: A,x(t) = f(t). Detailing with this, last
equation givesx(t) = (1 — )t X2, q'f(qg‘t) under the
assumption of the convergency of the series onritjte
side.

n

k
oo Akt then
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Letg € (0,1) and leta be any nonzero rational number.
We need the following-analogue ofi!, introduced in Kac
and Cheung (2001):

if n=0,
if n=1,2,..

1,
[”]!:{[nltﬁn—llu-tﬁ]l

Hence [n + 1]! = [n]! [n + 1] for eachn € N. Also,
following the notations in Kac and Cheung (2001 w

_
write [a] = % and for generalization of thg-binomial

coefficients

[a} :11[7} Lalla-thla= )+l Gy
0 j [
Note that:
1. 1]=1butln+1]=1+q+--+q"
. 1
andlim,_,,[n] = P
2. Forn € N: limg_4[n]! = n!;

a|_ al  (1-¢"Ha-¢
3 [1}“”’[2} T (-¢)-9)

Example 2.1. Let g =a =0.5. Then the sequence

a
( { }] = 1..4) ~ (0.586,—0.324,0.676, —3.358),
J

according to computations in Maple package.
In Ortigueira (2008), thg-difference of fractional order
is defined by

i(j+1)
Eﬁ](—l)"q 2 qle
A x(t) =t~ 1
q
1-9“

x(qt).

id

a . +D .
Letus denoté; = | = |(—1)/q z q7’“. Then
J

(1-)789x) =t _§0b,- X(@'t). (1)
]:

It is easy to check thdt, = 1. The series on the right
side of (1) needs the infinite values of the fumictk(-).

But if x(-) is such that it vanishes besides finite number

of points, then summation is finite.

If sis a natural number ar= 0, andt € R, then let
Q. (to): = {q*ty:k € Z,k < s}.

Leta € R,. Byu,: R — {0,1} we denote the Heaviside
step function such that,(t) = 0for t < a and u,(t) =
1for t = a. Then we can easily deduce the following:
Proposition 2.2.Let « > 0, s € Z. Let ¢: R - R™ be any
function andx(t) = @(t)u,(t). Then,

0 for t<a,
a = N(t,a) b: .
B =10 ——x(@q't)
j=0 (1-9)

(2)

for t=a,

Ina-Int

where N(t,a) = E[T] and E[x] denotes the integer
value ofx.
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Let L€ NU{0}, t, =q’, a = q'ty, p:R > R". The
vector

#(to)

#(ato)

M (,tg,8) = of ordered values of functiop on

#(d'to)
0,(ty), is called afinitel-memory att,. Observe that
if le NU{0}ands € NU {0}, ¢p:R = R", then

- M(,ty, @) € RV
if I;,l, e NU{0},1, =, andt, > 0,
then2,, (to) < 2, (to) and if L, is a matrix of the form

10 ...00..0
01 ..00..0
00 ..10..0

with the first block of the dimensidp x [;,
then alsl o, Oy, 1 M (12,80, 8) = M (11,45, 9).

Definition 2.3. Let LI NU{0} and t, >0, a = q't, €
02,(ty), ¢:R - R™. A linear g-difference fractional-order
time-varying control system witlh-memory is a system
given by the following set of equations, denotedthy:

AGX(t) = Aghx(at) + Blahu(qt), t>to 3)
x®)=(pu,)0),  tst @
y(t) = CH)x(t), (5)

where A(-) € R™™", B(-) € R™™, C(-) € RP*™ are matri-
ces with elements depending on time, ang® ~ u(q*) €
R™, k € Z, is any measurable function.
Remark 2.4.If [ - +o thengqg't, —» 0 for anyt, >0
and the vectoM ([, t,, ¢) becomes infinite.

From equation (1) and (3) we have

t t | ; t
X{EOJ = G[EOJX(IO) - jzzlb.-ﬂx(q’to) + f[EOJ

where G(t) = (t(1-9))” Alat)-byl . T ) =(t(1- )" Badu(a) .
Then,

tg |_[to(1-0) ! to
G = —{=byl,
[qk+1] [ qk+1 ] A{qk]

and 4, = 0,, while for j > 0: A; = —b;,,I,, where I,
is then X n — identity matrix. Moreover,

to |_~ to to J k4l x( k-j ) to
——|=G — [+ ZAX o)+ f
'{qkﬂJ [qkﬂ}{qk = qk+1

The idea of the construction given in the nextdifel-
lows from Guermah, Djennoune and Bettayeb (2008yeH
we extend the construction pdifference with finitel-
memory. Let us define the following sequence ofrives
from Rnx(nl+n):

®(to)=[11.0p....0,), 6(%}:[(3[%’}&,...@




a[%}e[%]a(%]% ..... Al

and fork > 2:

=t to )=t )., = to
CD[ k+1j = G[ k+1 }D[qkj +ZAJ cb[qk—j j+[Ak ! Ak+l"“' A<+I ]
j=1

q q

we connect the sequence
keNU{0}

of their sub-matrices iR™ " that we sub-

With the sequenc%ﬁi(%)}

2l N

tract from{ﬁ“)(;—?( } by the following operation

keNU{0}

oo

Theorem 2.5.Let Le NU{0} and t, > 0; a=q'ty €
0,(ty), ¢: R - R™. The solution of the systed, stated
in Definition 2.3, corresponding to contreland a memory
functiong is given by values for > t,:

o :&S[t_o]g(t )+|:[t_0}
X{qk] qk 0 qk

where X(t) =M (,t5,¢) and fork >2

e =) ()
q° q° gt ~ I gkt q

while F(t—OJ: f[t_f’] and
q q

e ()

Proof. For the proof we use the mathematical induction
with respect tok € N U {0}, where t = t,/q*. First
we check steps fdr € {1,2}. Fork = 1:

#(ato)

()

(8)

#(@a'to)

and then:

x(t—oj - G(t—ojqﬁ(to) + 3 AB(@Ito) + f(t—"J
q q i=1 q

= d'n(t—oji(to) + f[t—o].
q q

Similarly for k = 1 holds

t t t | i t
X{Q_OZJ = G[q%}{EOJ +A(to) + jZ:lA,- n#@'to) + f[q_on

Using the formula fox(t,/q) we get
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{t_j _ G(t_gje(t—ojgb(to) + Agto)
q q°) \a

| ) | _
+G t_02 [ZA1¢(q]t0)+ f[t_OJJ"'ZAjﬂ(b(q]to)
a = q j=1
I .
e
+F| o =q~{t—°2ji(to)+ F(t—gJ
q q q

Now let us assume that the solution formula hddats
all te 2,(ty), k€ Z_. Let us take nowt = t,/q***.
Hence

)= ctodad {qg | ]+ ().

Using the inductive assumption we get

x(t)=G(t)<5[;—f;]‘x“(to)+ a{qtk°_1]+---+&_1{%]%@00)

to
Clk+1 i

We can also use again inductive assumption for each
of x(to/q”),j=1,..,k —1:

Aol

and
k-1 -
e onfs)-Sae{ o Eor)

In the consequence

+ Acudaty) + -+ Ak+.¢(q'to)+e(t>F[;—°kJ+ f[

x(t):emas[L;]ﬁz‘lAja{ ty ]+[Ak ..... Al 7o)
q j=t q<!

+G Fl = |+ ZAF| —/= |+ f
[qk+1] [qk = ] qk i qk+1

induction the formula

Hence from the mathematical

for solution holds for alk € N U {0}.

Example 2.6. Let t,=1, [=1,
0

and A = [1 _01] B = [(1)] Let us take also the control

u(t) = 1. Then using Maple and formula given in Theorem
2.5 we can do calculations recursively. In thisscas get:

gq=a=05

0414 -1

0.081 O
1 0414 O

D(to/) =[ 0.081
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-1.162 -1 0.062 -0.114

D(ty/g?) = :
(tofa”) 1 -1.162 0.114 0.063

Moreover, as we také= 1 we need to start memory in

0
four dimensional space fai(t,). Let us taket(t,) = (1) .

1
Hence the initial state is in the origin, while ftdhe mem-
ory we have (1,1). Then x(2)= [(1)821 ,

1,777 _ [~0,347 _ [=9.109
x(4) = [1,592' *(8) = [4,234 , x(16) = [0,0909 ’
-3,367 _ [205,288

x(32) = [—35,612]”‘(64) = [-33612/

3. OBSERVABILITY
IN FINITE MEMORY DOMAIN

In this section we recall some facts related & d¢bn-
cept of the observability of lineag-difference fractional
system withl-memory given by Definition 2.3. The stan-
dard definition of observability says that a systsnob-
servable on time-interval if from the knowledgetloé out-
put of a given system we can reconstruct uniquedyiti-
tial condition. As we consider here systems togethi¢h
the extended initial conditions, callettmemory, we want
to determine the extended initial conditi@(t,) from the
knowledge ofY := {y(t,/q*),k = 0, ..., s}. Hence we need
to distinguish in our definitions the starting potg, it is
the similar situation as for time-varying systemis¢rete or
continuous). For that we use the definition oflavent as
a pair(t, %) € {q*:k € Z} x R**™ as the idea comes from
Sontag (1990).

Let us consider the linegrdifference fractional-order
syste mZ(w) .

Definition 3.1. Let [, s be any natural numbet, = g’o €
{¢*:k € Z} and letp,, be maps from the sdy*:k €
Z} U {0} into R™. We say that twaé-events(t,, X,), (to, X,),
where %,=M(l, ty, 1), X,=M(l, t,, ¢,), are indistinguish-
able with respect t&,, in s-steps if and only if there
is a controlu such that for all € Q,(t,),s € Z_,

Ct)x () = C()x2 (1), ©)

where functionsx; (-), x,(-) are given by (8) and corre-
spond respectively top,,¢,. Otherwise, thel-events
(to, %), (to,%,) are distinguishable with respect I,
in s-steps.

Definition 3.2. Let [,s € NU {0}, ¢;,:R —» R". We say
that the systerli,, is observable &, in s-steps if any two
l'events(tﬁlfl)! (tOJ f2)1 f1=1\4(l' tOl (pl)’ f2:1‘/[(11 tO! (pZ)v
are distinguishable with respectig in s-steps.

Directly from Definition 3.2 follows that the syste
X, Iis observable at, in I-memory domain ins-steps
if and only if the initial extended staf&t,) = M(L, ty, @)
can be uniquely determined from the knowledge
of Y :={y(ty/q"),k =0,...,s}.
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Proposition 3.3. Let [,s € NU{0}. The systemZXZ,
is observable at, in s-steps if and only if one of the fol-
lowing conditions holds

1. then X n real matrix:

W(s,tg) = ol [t—ok]CTCq{t—?(] is nonsingular;
k=0 q q
2. the matrixd(t,/q*) has linearly independent columns
for allk € {0, ..., s};

[ Co(ty) |

¥

q

Proof. Proof goes in the same manner as in the classical
linear control theory, see for example Kaczorelkd{@0
Example 3.4. For the system in Example 2.6 we have
0 0,414
W) =|oa1a 1172
servable ins = 1 steps, because raik(1,t,) = 2.

3. rankO(s) =rank

]. Hence systenk,-; is ob-

4. CONTROLLABILITY LAW

In the literature one can find many various comgep
of controllability. In our case is that we startraystem
att, € R,, not exactly at a point from the Set: k € Z}.
Definition 4.1. The systent, is said to be completely
[-memory controllable front, € R, in s-steps, if for any
@ = @(t), te 2,(ty), and any final valug, € R™ there is a
controlu = u(t), t€ 2_¢(t,), such thatx(t,/q°) = x;.
Definition 4.2. Let t, € R, ands € N. The (I, ) — me-
mory controllability Gramian for the systenk,)
onN_.(t,) we define recursively in the sequel

to)_(to@-9)) " o7
w2 |=[22TD ) BT B(t),
(q] [ q J (0)8(t0)

(s 55 o

q q q
+[to(1‘Q)]_a BT[t_o JB[t_o]
q2 a) q
and fork = 3:
to |_~f to to k=2 to
W| —- |=G| — Y \W| ——
[qk] [qk}N[qk'l}iz—ﬂA’ [qk"‘lj
to1-q) ) [ t t
{ 0 o ] BT[q"O‘ljB[q"o‘l}

Theorem 4.3. Lett, € R, and s € N. If the matrix
W (t,/q®) is nonsingular, then the control function given
fork € {1,...,s}




1

transfersx(t,) = @(t,) to X; =

Proof.

to to(1-0q) - T to |, to = to | =
S0 o0t BT 0 w20y =0 | (o)
qk] [ g ] [qk}N [qS] f [qS] °

)

is nonsingular, then the proof

It W(to/q*)

is by direct substitution the form of contrai(t,/q"*)
for k € {1, ..., s} to the formula of solutiom(t,/q°).
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