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Abstract: In the paper unconstrained local controllabilitplglem of finite-dimensional fractional discrete-&irsemilinear
systems with constant coefficients is addressethgugeneral formula of solution of difference statpiation sufficient con-
dition for local unconstrained controllability ingiaven number of steps is formulated and proveahp® illustrative example

is also presented.

1. INTRODUCTION

Controllability is one of the fundamental concepts
in modern mathematical control theory. This is gative
property of control systems and is of particulapartance
in control theory. The basic concepts of contraligh
reachability and the weaker notion of stabilizabilplay
an essential, fundamental role in dynamical systenay-
sis and in the solutions of many different impottaptimal
control problems.

Many dynamical systems are such that the contresdo
not affect the complete state of the dynamical esyst
but only a part of it. Therefore, it is very impanmt to de-
termine whether or not control of the completeestait the
dynamical system is possible. Roughly speakingtrotia-
bility generally means, that it is possible to stégnamical
system from an arbitrary initial state to an adyijr final
state using the set of admissible controls.

During last few years many results concerning theor
of fractional control systems both discrete-timed aron-
tinuous-time have been published in the litera{see e.g.
(Kaczorek, 2007a, 2007b, 2009; Klamka, 2002, 2008))
However, it should be pointed out, that the mosttrla-
bility results are known only for linear fractionabntrol
systems both without delays or with delays in aantr
or state variables.

Controllability problems studied in this paper cerrc
semilinear fractional discrete-time control systerikre
precisely, in the present paper unconstrained logatrol-
lability problem of finite-dimensional fractionalisgtrete-
time semilinear systems is addressed. Using gerieral
mula of solution of difference state equation, isight
condition for local controllability in a given nurab
of steps is formulated and proved. The present mpage
tends for semilinear discrete-time fractional cohtiystems
with constant coefficients controllability resultgiven
in Kaczorek (2007a, 2007b, 2009) and Klamka (2002,
2008) for linear fractional systems.

The paper is organized as follows. In section Bgise-
sults presented in (Kaczorek, 2007b), general ismut

of the difference state equation for finite-dimemsil frac-
tional linear systems is recalled. Sufficient caoiodi
for local unconstrained controllability of the sdimear
fractional discrete-time control system with constpa-
rameters is established in section 3. Section 4agu
simple numerical example, which illustrates theoedt
considerations. Finally, concluding remarks andppsd
tions for future works are given in section 5.

2. FRACTIONAL SYSTEMS

The set of nonnegative integers will be denotedZhy
Let xJR", uOR™, kOZ,. In this paper well known extended
definition of the fractional difference of the forifiKa-
czorek, 2007a, 2007b, 2009; Klamka, 2002, 2008)

=k
A, = Z(—l)l[cj_']xk_j forn-1<a<nON={12..}, k0z, (1)
j=0

will be used, wherex € R is the order of the fractional
difference and

1 for j=0
m = 2)
j a'(a'—l)..J:|(a—J+1) for j = 12,...
where(j-() is so called generalized Newton symbol. Let us

observe, that in the case wher= n we have well known
standard Newton symbol

e
JANTOR]

Let us consider the fractional discrete-time linsgs-
tem, described by the semilinear difference stptes
equation

D7 %41 = A+ BU + T (X, Uc)

3)
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wherex[JR", uJR" are the state and input aAcandB are
nxn andnxm constant matrices; R™<R" - R" is nonlinear
function differentiable near zero in the spaB8xR"
and such théft(0,0) =0.

Let us observe, that semilinear discrete-time cbistys-
tem is described by the difference state equatidmich
contains both pure linear and pure nonlinear pirtthe
right hand side of the state equation.

Using definition of fractional difference (1) we gna
write semilinear difference equation (3) in the ieglent
form

j=k+1
(a
X1+ Z (_1)J[jjxk—j+1:Axk+Buk+f(anuk)
j=1

Next, using standard linearization method (Klamka,
1995) it is possible to find the associated lingdference
state equation

j=k+1
ia
X1+ z (_1)1(-jxk—j+1:AXk+Buk+FXk+Guk
& j
j=1

wherenxn dimensional matrix

x=0,

d
F=—f(u
dx ( )u=0

andnxm dimensional matrix

d
G = a f (X,u) X:O,

u=0

Moreover, for simplicity of notation let us denote
A+F=CandD=B+G.
Thus we have
j=k+1 (a
X1t Z (_1)J(jjxk—j+l = Cx + Duy
j=1

(4)

Lemma 1. (Kaczorek, 2007b) The solution of linear differ-
ence equation (4) with initial conditiogdR" is given by
i=k-1

X =®yXo + Z(cbk—i—lDui)
i=0

(5)

where nxn dimensional state transition matrice@,
k=0,1,2,... are determined by the recurrent formula
i=k+1

i a
Pys1 = (CHIA) Py + z (_1)J+l(i Jq)k—iﬂ
i=2

(6)

with @, =1,, , wherel, is nxn dimensional identity matrix
and by assumption matriceg = 0 fork < 0.

Moreover, it should be pointed out, that the masig,
k=0,1,2,... defined above are extensions for fractiona
linear discrete-time control systems, the well knostate
transition matrices (see e.g. (Klamka, 1991)) fiandard
linear discrete-time control systems.
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3. CONTROLLABILITY

First of all, in order to define global and localntrolla-
bility concepts for semilinear and linear finitevdnsional
discrete-time control systems let us introduce tlogon
of reachable set or in other words attainable sef steps
(Kaczorek, 2007a, 2007b, 2009; Klamka, 1991, 12962,
2008).

Definition 1. For fractional semilinear system (3) or linear
system (4) reachable set insteps from initial condition
Xo = 0 is defined as follows:

Kq = {x(g)OR" x(q) is a solution of semilinear system (3)
or linear system (4) in stepfor sequence of admissible
controls i,uy,...U,..., U1} (7

Definition 2. The fractional semilinear discrete-time con-
trol system (3) is locally controllable ig-steps if there
exists a neighborhood of zelhIR", such that
Kg=N (8)
Definition 3. The fractional linear discrete-time linear con-
trol system (4) is globally controllable gasteps if
Kg=N 9)

For linear control system (4) let us introduce thgm
dimensional controllability matrix

Hq =[D,(®.D),(®,D),...(®;D),...(Pq-1D)] (20)

In order to prove sufficient condition for local riool-
lability of semilinear discrete-time fractional dool sys-
tems (3), we shall use certain result taken diyefrbm
nonlinear functional analysis. This result concesogalled
nonlinear covering operators.

Lemma 2. (Robinson, 1986) Let W: ZY be a nonlinear
operator from a Banach space Z into a Banach spface
and W(0)= 0. Moreover, it is assumed, that operator W has
the Frechet derivative dW((%-Y, whose image coin-
cides with the whole space Y. Then the image ofojhera-

tor W will contain a neighborhood of the point WI(D).

Now, we are in the position to formulate and prove
the main result on the local unconstrained corahbality
in the interval [0g] for the nonlinear discrete-time system
(). This result is known for semilinear or nonkneconti-
nuous-time control system and is given in Klamka98),
as a sufficient condition for local controllability
Theorem 1. Semilinear discrete-time control system (3)
is locally controllable ing steps if the associated linear
discrete-time control system (4) is globally cofitiole
in g-steps.
Proof. Proof of the Theorem 1 is based on Lemmas 1
and 2. Let the nonlinear operator W transform tpace
of admissible control sequenceau(): 0<i<q} into the
space of solutions at the stqdor the semilinear discrete-
time fractional control system (3).

More precisely, the nonlinear operator

W: R™xR™%.. . xR" . R"



asssociated with semilinear control system (3) efingd
as follows (Klamka, 1995):

W{u(0), u(1), u(2),...,u(i),...,u(q — 1)} = Xem(Q)

wherexsn(q) is the solution at the stapof the semilinear
discrete-time fractional control system (3) cormggting
to an admissible controls sequemnge {u(i): 0<i <g}.

Therefore, for zero initial condition Frechet dative
at point zero of the nonlinear operator W denoted\&/(0)
is a linear bounded operator defined by the foliayfor-
mula

dW(0){u(0), u(1), u(2),...,u(i),...,u(q - 1)} =xin()

wherex;in(q) is the solution at the stepof the linear system
(4) corresponding to an admissible controls seqeenc
Ug = {u(i): 0<i <q} for zero initial condition.

Since from the assumption nonlinear functi@0)= 0,
then for zero initial condition the nonlinear operaW
transforms zero in the space of admissible conintdszero
in the state space i.e., W@).

Moreover, let us observe, that if the associatadali
discrete-time fractional control system (4) is glthp con-
trollable in the interval [Og], then by Definition 1 the im-
age of the Frechet derivative dW(0) covers whoketest
spaceR".

Therefore, by the result stated at the beginninghef
proof, the nonlinear operator W covers some neigiuid
of zero in the state spa&. Hence, by Definition 2 semili-
near discrete-time fractional control system (3)osally
controllable in the interval [@)]. This completes the proof.

Now, for the convenience, let us recall some well
known (see e.g. (Kaczorek, 2007a, 2007b, 2009; Kiam
1991, 2002, 2008)) facts from the controllabilityeory
of linear finite-dimensional discrete-time fractarcontrol
systems.

Theorem 2. (Klamka, 2008) The fractional discrete-time
linear system (4) is globally controllable énsteps if and
only if

rankHg =n (11)
Taking into account the form of controllability miat
from Theorem 2 immediately follows the simple Ctan}.
Corollary 1. (Klamka, 2008)The fractional linear control
system (4) is controllable ig steps if and only if: X n di-
mensional constant matrik,H; is invertible, i.e. there
exists the inverse matrixi{H; ) -
Corollary 2. The fractional semilinear control system (3) is
controllable inq steps if equality (11) holds or equivalently
if nxn dimensional constant matfiyH; is invertible,
i.e. there exists the inverse matng](-Ig)‘l.

4. EXAMPLE

Let us consider the semilinear fractional disctates
control system with constant coefficients of themnio(3)
for0 < a <1 with the following matrices and vectors
in the difference state equation
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|10 10 _ | e'-1
A—{O J, B-[J, f(x,u)—f(xl,xz,u)—{%inx}(lz)

1

Hence we have

f (000) :m

d 0O
F=—1f(x.%,u) :0{ }
dx =l2 0

=0 ~
iz L0

Hence we have

10 1
C=A+F= , D=B+G=
21 1

Using formula (6) fok = 0 we obtain

1+a 0
P, =(C+la)dg = > 1+g

d
Gzif ’ ’
U (X, X2, )

Controllability matrix (10) forg = 2 has the form

1 1+a}

Ha :[D,(mlo)l{1 oo

Therefore, sincerank H, =2=n then taking into ac-
count Theorem 2 the fractional associated lineacrdie-
time system with constant coefficients is globalbntrolla-
ble in two steps, hence by Theorem 1 the semilifrear
tional discrete-time system (12) is locally confble
in two steps.

For comparison let us consider linear fractionacdite
system (4) with the matrices andB given equalities (12).
In this case using formula (6) fer= 0 we have

1+a 0
P =(A+1a)dg = 0 1+q

Controllability matrix (10) forg = 2 has the form
0 O
Hy =[B,(®:8)] =[1 MJ

Therefore, sinceankH, =1 <n then taking into ac-
count Corollary 1 the fractional linear discreited system
with constant coefficients is not globally conteddle in two
steps and consequently in any number of steps.

5. CONCLUDING REMARKS

In the present paper unconstrained local contritithab
problem of finite-dimensional fractional discrete¢ semi-
linear systems has been addressed. Using lingarizat
method and solution formula for linear differenacpuation
sufficient condition for unconstrained local coffigbility
in g steps of the discrete-time fractional control sgsthas
been established as rank condition of suitablyneeficon-
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trollability matrix. In the proof of the main resutertain
theorem taken directly from nonlinear functionakbysis
has been used. Moreover, simple illustrative nucagri
example has been also presented.

There are many possible extensions of the resiveng
in the paper. First of all it is possible to comsidemilinear
infinite-dimensional fractional control systems. idover,
it should be mentioned, that controllability coresiations
presented in the paper can be extended for fraadtidis-
crete-time linear systems with multiple delays bmththe
controls and in the state variables.
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