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Abstract: In the paper unconstrained local controllability problem of finite-dimensional fractional discrete-time semilinear 
systems with constant coefficients is addressed. Using general formula of solution of difference state equation sufficient con-
dition for local unconstrained controllability in a given number of steps is formulated and proved. Simple illustrative example 
is also presented.  

 

1. INTRODUCTION 

Controllability is one of the fundamental concepts 
in modern mathematical control theory. This is qualitative 
property of control systems and is of particular importance 
in control theory. The basic concepts of controllability, 
reachability and the weaker notion of stabilizability play 
an essential, fundamental role in dynamical systems analy-
sis and in the solutions of many different important optimal 
control problems. 

Many dynamical systems are such that the control does 
not affect the complete state of the dynamical system 
but only a part of it. Therefore, it is very important to de-
termine whether or not control of the complete state of the 
dynamical system is possible. Roughly speaking, controlla-
bility generally means, that it is possible to steer dynamical 
system from an arbitrary initial state to an arbitrary final 
state using the set of admissible controls. 

During last few years many results concerning theory 
of fractional control systems both discrete-time and con-
tinuous-time have been published in the literature (see e.g. 
(Kaczorek, 2007a, 2007b, 2009; Klamka, 2002, 2008)). 
However, it should be pointed out, that the most controlla-
bility results are known only for linear fractional control 
systems both without delays or with delays in control 
or state variables. 

Controllability problems studied in this paper concern 
semilinear fractional discrete-time control systems. More 
precisely, in the present paper unconstrained local control-
lability problem of finite-dimensional fractional discrete-
time semilinear systems is addressed. Using general for-
mula of solution of difference state equation, sufficient 
condition for local controllability in a given number 
of steps is formulated and proved. The present paper ex-
tends for semilinear discrete-time fractional control systems 
with constant coefficients controllability results given 
in Kaczorek (2007a, 2007b, 2009) and Klamka (2002, 
2008) for linear fractional systems. 

The paper is organized as follows. In section 2 using re-
sults presented in (Kaczorek, 2007b), general solution 

of the difference state equation for finite-dimensional frac-
tional linear systems is recalled. Sufficient condition 
for local unconstrained controllability of the semilinear 
fractional discrete-time control system with constant pa-
rameters is established in section 3. Section 4 contains 
simple numerical example, which illustrates theoretical 
considerations. Finally, concluding remarks and proposi-
tions for future works are given in section 5. 

2. FRACTIONAL SYSTEMS 

The set of nonnegative integers will be denoted by Z+. 
Let xk∈Rn, uk∈Rm, k∈Z+. In this paper well known extended 
definition of the fractional difference of the form (Ka-
czorek, 2007a, 2007b, 2009; Klamka, 2002, 2008) 
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will be used, where � ∈ � is the order of the fractional 
difference and 
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where ��� � is so called generalized Newton symbol. Let us 

observe, that in the case when � = � we have well known 
standard Newton symbol  
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Let us consider the fractional discrete-time linear sys-
tem, described by the semilinear difference state-space 
equation 
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where xk∈Rn, uk∈Rm are the state and input and A and B are 
n×n and n×m constant matrices, f: Rn×Rm → Rn is nonlinear 
function differentiable near zero in the space Rn×Rm 
and such that f (0,0) =0. 

Let us observe, that semilinear discrete-time control sys-
tem is described by the difference state equation, which 
contains both pure linear and pure nonlinear parts in the 
right hand side of the state equation. 

Using definition of fractional difference (1) we may 
write semilinear difference equation (3) in the equivalent 
form 

),()1(
1

1
11 kkkk

kj

j
jk

j
k uxfBuAxx

j
x ++=








−+ ∑

+=

=
+−+

α
 

Next, using standard linearization method (Klamka, 
1995) it is possible to find the associated linear difference 
state equation 
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where n×n dimensional matrix 
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Moreover, for simplicity of notation let us denote 
A + F = C and D = B + G. 

Thus we have 
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Lemma 1. (Kaczorek, 2007b) The solution of linear differ-
ence equation (4) with initial condition x0∈Rn is given by 
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where n×n dimensional state transition matrices Φk, 
k = 0,1,2,… are determined by the recurrent formula 
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with Φ0 = In , where In is n×n dimensional identity matrix 
and by assumption matrices Φk = 0 for k < 0. 

Moreover, it should be pointed out, that the matrices Φk, 
k = 0,1,2,… defined above are extensions for fractional 
linear discrete-time control systems, the well known state 
transition matrices (see e.g. (Klamka, 1991)) for standard 
linear discrete-time control systems. 

3. CONTROLLABILITY 

First of all, in order to define global and local controlla-
bility concepts for semilinear and linear finite-dimensional 
discrete-time control systems let us introduce the notion 
of reachable set or in other words attainable set in q steps 
(Kaczorek, 2007a, 2007b, 2009; Klamka, 1991, 1995, 2002, 
2008). 
Definition 1. For fractional semilinear system (3) or linear 
system (4) reachable set in q steps from initial condition 
x0 = 0 is defined as follows: 

Kq = {x(q)∈Rn: x(q) is a solution of semilinear system (3) 
or linear system (4) in step q for sequence of admissible 
controls  u0,u1,…uk,…,uq-1} (7) 

Definition 2. The fractional semilinear discrete-time con-
trol system (3) is locally controllable in q-steps if there 
exists a neighborhood of zero N⊂Rn, such that 

NKq =  (8) 

Definition 3. The fractional linear discrete-time linear con-
trol system (4) is globally controllable in q-steps if 

NKq =  (9) 

For linear control system (4) let us introduce the n×qm 
dimensional controllability matrix 

)](),...,(),...,(),(,[ 121 DDDDDH qiq −ΦΦΦΦ=  (10) 

In order to prove sufficient condition for local control-
lability of semilinear discrete-time fractional control sys-
tems (3), we shall use certain result taken directly from 
nonlinear functional analysis. This result concerns so called 
nonlinear covering operators. 
Lemma 2. (Robinson, 1986) Let W: Z→Y be a nonlinear 
operator from a Banach space Z into a Banach space Y 
and W(0) = 0. Moreover, it is assumed, that operator W has 
the Frechet derivative dW(0): Z→Y, whose image coin-
cides with the whole space Y. Then the image of the opera-
tor W will contain a neighborhood of the point W(0)∈Y. 

Now, we are in the position to formulate and prove 
the main result on the local unconstrained controllability 
in the interval [0, q] for the nonlinear discrete-time system 
(1). This result is known for semilinear or nonlinear conti-
nuous-time control system and is given in Klamka (1995), 
as a sufficient condition for local controllability. 
Theorem 1. Semilinear discrete-time control system (3) 
is locally controllable in q steps if the associated linear 
discrete-time control system (4) is globally controllable 
in q-steps. 
Proof. Proof of the Theorem 1 is based on Lemmas 1 
and 2. Let the nonlinear operator W transform the space 
of admissible control sequence {u(i): 0 ≤ i ≤ q} into the 
space of solutions at the step q for the semilinear discrete-
time fractional control system (3). 

More precisely, the nonlinear operator 

W: Rm×Rm×…×Rm →Rn  



acta mechanica et automatica, vol.5 no.2(2011) 

 57

asssociated with semilinear control system (3) is defined 
as follows (Klamka, 1995): 

W{ u(0), u(1), u(2),..., u(i),..., u(q − 1)} = xsem(q) 

where xsem(q) is the solution at the step q of the semilinear 
discrete-time fractional control system (3) corresponding 
to an admissible controls sequence uq = {u(i): 0 ≤ i < q}. 

Therefore, for zero initial condition Frechet derivative 
at point zero of the nonlinear operator W denoted as dW(0) 
is a linear bounded operator defined by the following for-
mula 

dW(0){u(0), u(1), u(2),..., u(i),..., u(q − 1)}  = xlin(q) 

where xlin(q) is the solution at the step q of the linear system 
(4) corresponding to an admissible controls sequence 
uq = {u(i): 0 ≤ i < q } for zero initial condition. 

Since from the assumption nonlinear function f(0,0) = 0, 
then for zero initial condition the nonlinear operator W 
transforms zero in the space of admissible controls into zero 
in the state space i.e., W(0) = 0. 

Moreover, let us observe, that if the associated linear 
discrete-time fractional control system (4) is globally con-
trollable in the interval [0, q], then by Definition 1 the im-
age of the Frechet derivative dW(0) covers whole state 
space Rn. 

Therefore, by the result stated at the beginning of the 
proof, the nonlinear operator W covers some neighborhood 
of zero in the state space Rn. Hence, by Definition 2 semili-
near discrete-time fractional control system (3) is locally 
controllable in the interval [0, q]. This completes the proof.  

Now, for the convenience, let us recall some well 
known (see e.g. (Kaczorek, 2007a, 2007b, 2009; Klamka, 
1991, 2002, 2008)) facts from the controllability theory 
of linear finite-dimensional discrete-time fractional control 
systems. 
Theorem 2. (Klamka, 2008) The fractional discrete-time 
linear system (4) is globally controllable in q steps if and 
only if 

nHrank q =  (11) 

Taking into account the form of controllability matrix, 
from Theorem 2 immediately follows the simple Corollary. 
Corollary 1. (Klamka, 2008) The fractional linear control 
system (4) is controllable in q steps if and only if � × �	di-
mensional constant matrix ����

� is invertible, i.e. there 
exists the inverse matrix (����

�) –1. 
Corollary 2. The fractional semilinear control system (3) is 
controllable in q steps if equality (11) holds or equivalently 
if � × �	 dimensional constant matrix����

� is invertible, 
i.e. there exists the inverse matrix (����

�) –1. 

4. EXAMPLE 

Let us consider the semilinear fractional discrete-time 
control system with constant coefficients of the form (3) 
for 0 ≤ � ≤ 1 with the following matrices and vectors 
in the difference state equation 
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Hence we have 
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Hence we have 
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Using formula (6) for k = 0 we obtain 
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Controllability matrix (10) for q = 2 has the form 
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Therefore, since rank H2 = 2 = n then taking into ac-
count Theorem 2 the fractional associated linear discrete-
time system with constant coefficients is globally controlla-
ble in two steps, hence by Theorem 1 the semilinear frac-
tional discrete-time system (12) is locally controllable 
in two steps. 

For comparison let us consider linear fractional discrete 
system (4) with the matrices A and B given equalities (12). 
In this case using formula (6) for k = 0 we have 
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Controllability matrix (10) for q = 2 has the form 
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Therefore, since rank H2 = 1 < n then taking into ac-
count Corollary 1 the fractional  linear discrete-time system 
with constant coefficients is not globally controllable in two 
steps and consequently in any number of steps. 

5. CONCLUDING REMARKS 

In the present paper unconstrained local controllability 
problem of finite-dimensional fractional discrete-time semi-
linear systems has been addressed. Using linearization 
method and solution formula for linear difference equation 
sufficient condition for unconstrained local controllability 
in q steps of the discrete-time fractional control system has 
been established as rank condition of suitably defined con-
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trollability matrix. In the proof of the main result certain 
theorem taken directly from nonlinear functional analysis 
has been used. Moreover, simple illustrative numerical 
example has been also presented. 

There are many possible extensions of the results given 
in the paper. First of all it is possible to consider semilinear 
infinite-dimensional fractional control systems. Moreover, 
it should be mentioned, that controllability considerations 
presented in the paper can be extended for fractional dis-
crete-time linear systems with multiple delays both in the 
controls and in the state variables. 
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