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Abstract: In the paper the short theoretical backgrounds talastic-plastic fracture mechanics were presented
and the O’Dowd-Shih theory was discussed. UsingM®Bystem program, the values of the Q-stress ohirted for vari-
ous elastic-plastic materials for SEN(T) specimesingle edge notched plates in tensiowere presented. The influence
of kind of the specimen, crack length and matqaiaperties (work-hardening exponent and yield sjres the Q-parameter
were tested. The numerical results were approxinbyethe closed form formulas. Presented in theepagsults are com-
plementary of the two papers published in 2007 [§&r2007) and in 2010 (Graba, 2010), which showdssdribe influence

of the material properties and crack length for @hstress value for SEN(B) and CC(T) specimens reispéct Presented
and mentioned papers show such catalogue of thee@ssralue, which may be used in engineering argafgr calculation

of the real fracture toughness.

1. INTRODUCTION TO ELASTIC-PLASTIC
FRACTURE MECHANICS

In 1968 J. W. Hutchinson (ADINA 8.4.1, 2006a) pub-
lished the fundamental paper, which characterizeelss
fields in front of a crack for non-linear Ramberggood
(R-O) material in the form:

j 5. (o) ®

where r and 6 are polar coordinates of the coordinate
system located at the crack tip;; are the components
of the stress tensof,is theJ-integral,n is R-O exponent,

a is R-O constantg is yield stressg, is strain related to
gp throughe, = g, /E. Functionsg;;(n, ), I,(n) must be
found by solving the fourth order non-linear homoges
differential equation independently for plane <tres
and plane strain (Hutchinson, 1968). Equation §1¥am-
monly called the “HRR solution” (Fig. 1).

The HRR solution includes the first term of theinite
series only. The numerical analysis shown, thatltes
obtained using the HRR solution are different froime
results obtained using the finite element methodMF -
see Fig. 2. To eliminate this difference, it's resagy to use
more terms in the HRR solution.

In 1985 Li and et. (Li and Wang, 1985) proposed the
another stress field description, which was useal thvms
in the Airy function. They obtained the second term
of the asymptotic expansion for the two materiagsaibed
by two different work-hardening exponemt=3 andn=10.
Next, they compared their results with the HRRdseand
FEM results. Their analysis shown, that using the term
solution to describe the stress field near thekctige brings
closer analytical results to FEM results. Two tesotution
much better describes the stress field near thekdtip,
and the value of the second term, which may nbietmeg-
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ligible depends on the material properties andgg@emetry
specimen.

E = 206000MPa n=5
g 0, =315MPa v =0.30
€, = 0,/E = 0.00153
results for angle 6 =0
©—o—> plane stress
©—e—o plane strain

\ \ \ \ \ \
0 2 4 6 8 10

Y =rlg,/J
Fig. 1. The crack opening stress distribution for elaptastic
materials, obtained using the HRR solution

In 1993 Yang and et. (Yang et al., 1993) usingAhg
function with the separate variables in the inéngeries
form, proposed, that stress field near the crgckrtay be
described by the Eq. (2) in the infinite seriegrfor

95 =3 AF=G¥(6) @
Uo k=1
wherek is the number of the series termg,is the ampli-

tude for thek series termz is the normalized distance from

the crack tip,s; is power exponent for thk series term,
and&i(jk) is “stress” function.

Using only three terms of the infinite series, KE2)
may be written in the following form:
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where the&i(jk)functions must be found by solving the

fourth order non-linear homogenous differential atpn
independently for plane stress and plane straiis the
power exponent, which is identical to the one ia HRR
solution & may be calculated &s-1/(n+1)), t is the power
exponent for the second term of the asymptotic esipa,
which must be found numerically by solving the thur
order non-linear homogenous differential equatiodet
pendently for plane stress and plane straiis, the normal-
ized distance from the crack tip calculatedasr/(J/a,),
A; is the amplitude of the first term of the infiniseries
evaluated ad; = (agyl,,)~ Y@V andA; is the amplitude
of the second term, which is calculated by fittthg Eq. (3)
to the numerical results of the stress fields cltuserack

tip.

CC(T) a/W=0.50 W =40mm
E =206000MPa n=5
0, =315MPa v =0.30
€, = 0,/E =0.00153

8 results for angle 6 =0
6—e—o plane strain - HRR
+—+—+ plane strain - FEM
o——= plane stress - HRR

6 Y — plane stress - FEM

J = 48.35kN/m
I R \ \ \

0 2 4 6 8 10
Y =rld,/Jd

Fig. 2. Comparison the FEM results and HRR solution
for plane stress and plane strain for centerkedplate
in tension (CC(T))

In 1993 Shih et al. (1993) proposed simplified solu
They assumed, that the FEM results are exact ant co
puted the difference between the numerical and H&R
sults. They proposed, that the stress field neacthck tip,
may be described using only two terms, by followarmpa-

tion:
1/(n+1) "
g. @:n)+
j ”( ) Q[J/ o,

q
9 :[ J j 5. (en) @
o, \ae,o,l,r :
where 6;;(8,n) are functions evaluated numerically,
g is the power exponent, which value changes irrdinge
(0; 0.071), andQ is the parameter, which is the amplitude
of the second term asymptotic solution. Tpparameter is

commonly called theQ®-stress”.
O’Dowd and Shih (1991, 1992), tested tBearameter
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in the rangel/ gy<r<5J/ gy near the crack tip. They showed,
that theQ-parameter weakly depend on crack tip distance
in the range of thetv2 angle. O'Dowd and Shih proposed
only two terms to describe the stress field nearctack tip:

0 =(0} ), + Q045 (6) ®)

W =40mm a/W =0.50

0, =315MPa v =0.30

E =206000MPa n=5
©o—o—0 CC(T) plane stress
6—e—o0 CC(T) plane strain

0.4 a—2—a SEN(B) plane stress
| %—%—x SEN(B) plane strain

0.4

O |

-0.8 1

-1.2 4

-1.6 T T T \
0 40 80 120 160

J [kN/m]

Fig. 3. The comparison of the J-Q trajectories
for CC(T) and SEN(B)

To avoid the ambiguity during the calculation oé t®-
stress, O’'Dowd and Shih (O’'Dowd, Shih, 1991), (OhRb
Shih, 1992) have suggested, where @stress may be
evaluated. It was assumed, that @istress should be com-
puted at distance from crack tip, which is equal=dJ/ g,
for &0 direction. O'Dowd and Shih postulated, that for
6=0 the functionggyy (0 = 0) is equal to 1. That's why, the
Q-stress may be calculated from following relatidpsh

0= (o) eem ~(T0)er for 620 and% =2 (6)
0-0

where (dgg)rem is the stress value calculated using FEM
and(gggurr IS stress value evaluated form HRR solution.
During analysis, O’'Dowd and Shih shown, that in thege

of 8=£174, the following relationships take plac@&,y ~
Q6yr, Ggg/0rr =1 and Qb9 =0 (becauseQd,q <<
Qdgg)- Thus, theQ-stress value determines the level of the
hydrostatic stress. For plane stress,Qhgarameter is equal
to zero, but for plane strain, tiig parameter is in the most
cases smaller than zero (Fig. 3).

2. DISCUSSION ABOUT ENGINEERING
APPLICATIONS OF THE J-Q THEORY

To describe the stress field near the crack tipefastic-
plastic materials, the HRR solution is most oftesed
(Eqg. 1). However the results obtained are usuallgresti-



mated and analysis is conservative. The HRR saiutio
includes the first term of the infinite series anly

The numerical analysis shown, that results obtaud
ing the HRR solution are different from the reswlbdained
using the finite element method (FEM) — see Fig. 2.
To eliminate this difference, it's necessary to usere
terms in the HRR solution, for example theA, theory
suggested by Yang and et. (Yang et al., 1993),her t
O’Dowd and Shih approach — tlieQ theory (O’'Dowd, and
Shih, 1991).

For using the O’Dowd approach, engineer needs only
the Q-stress distribution, which must be calculated niiime
cally. That's why O’'Dowd approach is easier andapln-
ter in use in contrast td-A, theory. Using thel-A, theory
proposed by Yang and el., first engineer must séueth
order nonlinear differential equation to determthe &l.(jk)
function and the power exponent. Next, the engineer using
FEM results calculated th, amplitude by fitting the Eq. 3
to numerical results.

The J-Q theory found application in European Engi-
neering Programs, like SINTAP (Sintap, 1999) or NHET
(Fitnet, 2006). The&Q-stress are applied under construction
the fracture criterion and to assessment the fradibugh-
ness of the structural component. Thus O’Dowd théas
practical application in engineering issues.

Sometimes using thd-Q theory may be limited, be-
cause there is no value of tigestress for given material
and specimen. Using any fracture criterion, for repke
proposed by O’Dowd (O’Dowd, 1995), or another cids,
the engineer can estimate fracture toughness qtiést
if the Q-stress are known. Literature doesn’t announce the
Q-stress catalogue ar@stress value as function of exter-
nal load, material properties or geometry of thecémen.

In some articles, the engineer may find 8h@ graphs for
certain group of material.

The best solution will be, origin the cataloguahs J-Q
graphs for materials characterized by various yidngth,
different work-hardening exponent. Such catalogoeukd
take into consideration the influence of the exaérload,
kind of the specimen (SEN(B) specimen — bending\ St
specimen — tension) and geometry of the specinoen Ror
SEN(B) and CC(T) specimens, such catalogues wexe pr
sented by Graba in 2007 (Graba, 2007) and in arid 20
(Graba, 2010) respectively.

In the next parts of the paper, the values ofQkstress
will be determined for various elastic-plastic miatks for
single edge notched specimens in tension (SEN(Hg
SEN(T) specimen is the basic structural elemenichvis
used in the FITNET procedures to modeling real trons
tions. All results will be approximated by the adsform
formulas.

3. DETAILS OF NUMERICAL ANALYSIS

In the numerical analysis, the single edge notcpsst
cimens in tension (SEN(T)) were used (Fig. 4). Disiens
of the specimens satisfy the standard requiremdrnthwy
is set up in FEM calculationl->2W, whereW is the width
of the specimen and is the measuring length of the speci-
men. Computations were performed for plane straingu
small strain option. The relative crack length veamial to
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a/W={0.20, 0.50, 0.70} whera is a crack length and the
width of specimendV was equal to 40mm. For this case,
the measuring length satisfied the conditioh=80mm.

e
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Fig. 4. The single edge notched specimen in tension (SEN(T)
used in the numerical analysis

The choice of the SEN(T) specimen was intentiobed,
cause the SEN(T) specimens are used in the FITNBT p
cedures to modeling real structural elements. Also
in FITNET procedures, the limit load and stressfisity
factors solutions for SEN(T) specimens are presente
However in the EPRI procedures (Kumar et al.,, 1981)
the hybrid method for calculation thkintegral is given.
Also some laboratory test in order to determire dtitical
values of theJ-integral, may be done using the SEN(T)
specimen.

Computations were performed using ADINA SYSTEM
8.4 (Adina, 2006a, b). Due to the symmetry, onlyadf
of the specimen was modeled. The finite elementhmess
filled with the 9-node plane strain elements withen(3x3)
Gauss integration points. The size of the finiter@nts in
the radial direction was decreasing towards thelctip,
while in the angular direction the size of eachmedat was
kept constant. The crack tip region was modeledgusi0
semicircles. The first of them, was at least 20e8rsmaller
then the last one. It also means, that the firstefielement
behind to crack tip is smaller 2000 times than width
of the specimen. The crack tip was modeled as quart
ofthe arc which radius was equal tg=110°m (it's
(0.00002%W). The whole SEN(T) specimen was modeled
using 323 finite elements and 1353 nodes. Extelwed
was applied to bottom edge of the specimen. Thenpia
finite element model for SEN(T) specimen used ia -
merical analysis is presented on Fig. 5.

In the FEM simulation, the deformation theory oa!
ticity and the von Misses vyield criterion were atkp In
the model the stress—strain curve was approximayethe
relation:

& _{U/Uo

& |alojo,)

foro< o,
= ° )
& foro> o,

where a=1. The tensile properties for the materials which
were used in the numerical analysis are presengbawb
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inthe Tab.1. In the FEM analysis, calculations avdbne
for sixteen materials, which were differed by yiedttess
and the work hardening exponent.

a)

HERE EXTERNAL LOAD WAS APPLIED TO THE
MODEL USING “PRESCRIBED Z-
DISPLACEMENT" METHOD

N

TIME 30.00 Z

A
D
|
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A

b)

vy

BOUNDARY
CONDITIONS
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B./-
Y - DISPLACEMENT

ALLOWED ONLY (U,)
Z - DISPLACEMENT

FIXED (U,)
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TIME 30.00
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BBB B BB
CRACK TIP
HERE BOUNDARY
CONDITIONS WERE
APPLIED TO THE MODEL
B BBBBBBBB
HERE BOUNDARY CRACKTIP

CONDITIONS WERE APPLIED
TO THE MODEL

Fig. 5.a) The finite element model for SEN(T) specimen

used in the numerical analysis; b) The finienednts
mesh near crack tip using in the numerical aisly

Tab. 1. The mechanical properties of the materials used in

numerical analysis and the HRR parameters for plaams

o) =~ —

[MPOa] EMPal| v | a=a/E |a| n|de@=0] 1,
315 0.00153 3 1.94 | 551
500 0.00243 5 222 | 5.02
1000 | 296990 | 0300485 | 1 [ 10 250 | 454
1500 0.00728 20 268 | 4.21
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The J-integral were calculated using two methods.
The first method, called the “virtual shift methodises
concept of the virtual crack growth to compute tir¢ual
energy change. The second method is based on the
J—integral definition:

J = [[wdx, ~t(0u/ax, )ds] ®)

wherew is the strain energy densityjs the stress vector
acting on the contouC drawn around the crack tip,
u denotes displacement vector adsl is the infinitesimal
segment of contouE.

In summary, in the numerical analysis 48 SEN(T)
specimens were used, which were differed by craokth
and material properties.

4. ANALYSIS OF THE NUMERICAL RESULTS

The analysis of the results obtained was made én th
rangeJ/ g,<r<6J/ g, near the crack tip, and its shown, that
the Q-stress decrease if the distance from the crackntip
crease (Fig. 6). If the external load increases,Q¥stress
decreases and the difference betwégstress calculated
in the following measurement points increase (B)glf the
crack length decrease th€rstress reaches more negative
value for the samé-integral level (Fig. 7).

For the sake of the fact, that tiggparameter, which
is used in fracture criterion is calculated at aiste equal
to r=2J/oy, it's necessary to notice some comments about
obtained results. If the yield stress increaseg h
parameter increase too, and it reflects for all SEN
specimen with different crack lengdtW (Fig. 8). For
smaller yield stress thd-Q trajectories shape up well
lower and it's observed faster changes of @aparameter
if the external load is increase (Fig. 8).

For SEN(T) specimens, the ambiguous behavior of the
J-Q trajectories depending of the work-hardening expo-
nent is observed. For specimens with short cracks
(a/W=0.20) and the same yield stress, for smaller walue
of the work-hardening exponent n (erg5), theQ-stress
become less negative (Fig. 9). For specimens with t
normative crack lengthe(\W=0.50) or with the long cracks
(a/W=0.70), the cutting of the-Q trajectories was ob-
served (Fig. 10 and Fig. 11) - first the higherues of the
Q-stress were observed for specimen characterized
by strongly hardening material, but for increasaxgernal
load the reversal of the trend took place and tighdr
Q-stress were observed for specimens characterized
by weakly hardening material.

For short cracks th@-stress value drops more rapidly

then for long ones in the range of the small exdkfoad
(Fig. 7). For specimen with long cracka/\(4=0.70), the
another nature of thd-Q trajectories was observed than
for specimen with relative cracks lengdiw<0.50 (Fig.
7). It may be a consequence of the absence inrtalysis
of the stress field, the consideration of the begditress
near the crack tip, which was discussed by Chaal.et
(2004).



o—o—o 1 = 10/g,
o—e—or = 20/o,

a—a—ar =3/g,

x—x%—xXr = 4/0,
*—+*—=r = 5[]/g,

o—B—8r =6/,

|SEN(T) plane strain
-1.6 4W =40mm a/W = 0.50
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'2 T ‘ T ‘ T ‘ T ‘ T ‘
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Fig. 6.“The J-Q family curves” for SEN(T) specimen calculated
at six distances from crack tip

0 — —o— a/W=0.05
—e— a/W=0.20
—2— a/W =0.50
—%— a/Ww=0.70

1 SEN(T) plane strain W =40mm
n=10 v =0.30 E =206000MPa
0, = 1000MPa (o,/E = 0.00485)
\ ‘ \ ‘ \
0 200 400 600
J [KN/m]
Fig. 7. The influence of the crack length & trajectories
for SEN(T) specimens

—o— 0, = 315MPa (6,/E = 0.00153)
—e— 0, = 500MP (G,/E = 0.00243)
—a— 0, = 1000MPa (0,/E = 0.00485)
-0.4-%—x— 0, = 1500MPa (0,/E = 0.00728)

1 SEN(T) plane strain
W =40mm a/W = 0.20
-167n=10 v=0.30 E=206000MPa

0 400 800 1200 1600
J [KN/m]
Fig. 8. The influence of the yield stress & trajectories for
SEN(T)
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SEN(T) plane strain
W =40mm a/W =0.20
0 v =0.30 E =206000MPa
0, = 315MPa (o,/E = 0.00153)
X —<—n=3
—o—n=5

-1.6 \ \ \ \
0 100 200 300 400
J [KN/m]
Fig. 9. The influence of the work hardening exponengdp
trajectories for SEN(T) specimers\(/=0.20, g;=315MPa)

SEN(T) plane strain

W =40mm a/W =0.50
0 v=0.30 E =206000MPa
0, = 500MPa (g, /E = 0.00243)
—0—n=3

—6— n=5

-1.6 \ \ \ \ \
0 100 200 300 400 500
J [KN/m]
Fig. 10.The influence of the work hardening exponendp
trajectories for SEN(T) specimer&g\(=0.50, g;=500MPa)

——nN=3
'0.27 497[‘]:5

| SEN(T) plane strain

-1+ W=40mm a/W=0.70

v=0.30 E =206000MPa

L 0, = 1000MPa (0,/E = 0.00485)

-1 ‘ T ‘ I T 1
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Fig. 11.The influence of the work hardening exponengdp
trajectories for SEN(T) specimera\(=0.70,,=1000MPa)
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5. APPROXIMATION OF THE NUMERICAL
RESULTS

In the literature the mathematic formulas, to ckdltai
the Q-stress taking into consideration the level of exaé
load, material properties and geometry of the speni
are not known for the most of the cases. Preseint¢de
paper numerical computations provided with h@ cata-
logue and the universal formula (9), which allowscal-
culate theQ-stress and take into consideration all the
parameters influencing the value of t@estress. All re-
sults, were presented in th@®=f(log(J/(aldo))) graph
forms. Next all graphs were approximated by thepsem
mathematical formulas, taking the material progssti
external load and geometry specimen into considerat
All the approximations were made for results obedirat
the distance=2.00/o. Each of the obtained trajectories
Q=f(log(J/(aldy))), was approximated by the third order
polynomial in the form:

AJ.a0,)=A+B [Elog((aéjo)ﬂ '

+C EEIog((a;%)sz +D EEIog (alé%)f

where theA, B, C, D coefficients depend on the work-
hardening exponenm, yield stressgy and crack length
a/W. The rank of the fitting the formula (9) to nunui
results for the worst case was eqB&0.95. For different
work hardening exponents yield stressegp and ratios
a/W, which were not include in the numerical analyti®,
coefficients A, B, C and D may be evaluated using the
linear or quadratic approximation. Results of tippraxi-
mation (all coefficients of the approximation nuigcat
results by Eq. (9)) are presented in Tables 2-4.

(9)

Tab. 2. The coefficients of equation (9) for SEN(T) speaime

with the crack leng#W=0.20
a, = 315MPa a/E = 0.00153
n A B C D R
3 -2.476 -2.221 -1.165 -0.228 0.993
5 -2.128 -1.722 -0.999 -0.223 0.997
10| -1.752 -0.991 -0.604 -0.163 0.998
20| -1.677 -0.683 -0.379 -0.121 0.997
d, = 500MPa ay/E = 0.00243
n A B C D R
3 -1.618 -0.876 -0.397 -0.087 0.986
5 -1.105 0.104 0.119 -0.008 0.996
10| -1.365 -0.139 0.029 -0.026 0.996
20| -1.465 -0.145 0.075 -0.017 0.996
0, = 1000MPa 0/E = 0.00485
n A B C D R
3 -1.875 -1.438 -0.651 -0.119 0.958
5 -1.198 0.007 0.217 0.037 0.990
10| -1.065 0.552 0.622 0.116 0.995
20| -1.163 0.533 0.654 0.122 0.996
0, = 1500MPa ag/E = 0.00728
n A B C D R
3 -1.601 -1.099 -0.477 -0.089 0.982
5 -1.469 -0.537 -0.056 -0.002 0.990
10| -1.401 -0.078 0.328 0.080 0.996
20| -1.486 -0.085 0.364 0.088 0.996

Tab. 3. The coefficients of equation (9) for SEN(T) speaime
with the crack lengtla/\WW=0.50

0, = 315MPa Gy/E = 0.00153
n A B C D R
3| -2.743 -1.606 -0.456 -0.059 0.990
5| -2.909 -1.516 -0.334 -0.038 0.990
10| -0.621 1.913 1.291 0.205 0.996
20| 0.238 3.364 2.03142 0.320 0.996
0, = 500MPa Gy/E = 0.00243
n A B C D R
3| -3.927 -3.615 -1.435 -0.209 0.982
5| -3.383 -2.414 -0.728 -0.088 0.995
10| -2.009 -0.132 0.435 0.094 0.997
20| -1.810 0.450 0.811 0.160 0.997
0, = 1000MPa 0o/E = 0.00485
n A B C D R
3| -4.009 -4.031 -1.629 -0.229 0.977
5| -2.662 -1.869 -0.545 -0.059 0.997
10| -2.773 -1.760 -0.403 -0.032 0.996
20| -2.971 -1.789 -0.312 -0.006 0.997
0o = 1500MPa 0,/E = 0.00728
n A B C D R
3| -2.612 -2.335 -0.943 -0.138 0.994
5| -2.505 -1.895 -0.629 -0.078 0.999
10| -2.559 -1.688 -0.420 -0.035 0.996
20| -2.357 -1.041 0.048 0.059 0.997

Fig. 12 presents the comparison of the numericallte
and their approximation fod-Q trajectories for several
cases of the SEN(T) specimens. Fig.s 13-15 presgeie
graphical form some numerical results obtainedSiBN(T)
specimens in plain strain. All results are presgniging the
J-Q trajectories.

Tab. 4. The coefficients of equation (9) for SEN(T) speaime
with the crack lengtla/\W=0.70

0, = 315MPa 0,/E = 0.00153
n A B C D R
3| -6.051 -4.762 -1.512 -0.179 0.989
5| -3.287 -0.872 0.171 0.049 0.991]
10| 0.290 3.710 2.045 0.294 0.993
20| 4.424 8.931 4.175 0.574 0.993
0, = 500MPa 0,/E = 0.00243
n A B C D R
3| -8575 -8.072 -2.818 -0.341 0.989
5| -10.470 -9.908 -3.417 -0.410 0.997]
10| -11.036 -9.958 -3.227 -0.365 0.998
20| -0.753 2.846 1.979 0.325 0.993
d, = 1000MPa 0o/E = 0.00485
n A B C D R
3| -6.703 -6.471 -2.323 -0.286 0.985
5| -7.237 -6.937 -2.456 -0.301 0.996
10| -7.642 -7.198 -2.481 -0.297 0.998
20| -8.527 -8.058 -2.747 -0.325 0.997
a, = 1500MPa G,/E = 0.00728
n A B C D R
3| -5.580 -5.462 -2.021 -0.256 0.976
5| -5.819 -5.576 -2.011 -0.250 0.995
10| -5.990 -5.608 -1.961 -0.238 0.998
20| -7.453 -7.315 -2.617 -0.322 0.999
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0,/E =0.00153 n=5
numerical result
0,/E =0.00153 n=5

—=— result of the approximation

R%=0.99 0

0+ o,/E =0.00243 n=10

numerical result

0,/E =0.00243 n=10
—6&— result of the approximation
R?=0.997

SEN(T) plane strain
W=40mm a/W=0.70
n=10 v=0.30 E=206000MPa
—— 0,=315MPa (0,/E=0.00153)
—e— 0,=500MPa (0,/E=0.00243)
—a— 0,=1000MPa (0,/E=0.00485)
B —x— 0,=1500MPa (0,/E=0.00728)

-1.2 -

SEN(T) plane strain
4 W=40mm a/W=0.50

E = 206000MPa v =0.30 -1.6 T T 1 1
-1.6 L e \ 0 200 400 600 800
0 100 200 300 400 500 J [kN/m]
J [kN/m] Fig. 15.Sample numerical results obtained for SEN(T) spens:

Fig. 12. Comparison of the numerical results and their agpration
for J-Q trajectories for SEN(T) specimens with relativaak
lengtha/W=0.50: g;={315, 500}MPa,n={5, 10}

the influence of the yield stress $1Q trajectories
for specimens with crack lengéiW=0.70
and for power exponenis10

SEN(T) plane strain

W=40mm a/W=0.20

n=20 v=0.30 E=206000MPa
0 —o— 0,=315MPa (0,/E=0.00153)
—o— 0,=500MPa (0,/E=0.00243)
% —a— 0,=1000MPa (0,/E=0.00485)

04— x— 6,1500MPa (6,/E=0.00728)

6. SUMMARY

In the paper the values of the Q-stress were détedm
for various elastic-plastic materials for singlegechotched
specimens in tension (SEN(T)). The influence of yedd
strength, the work-hardening exponent and the dexugth
on theQ-parameter was tested. The numerical results were
approximated by the closed form formulas. The niost
portant results are summarized as follows:
- theQ-stress depends on geometry and external the load;
different values of th&-stress are obtained for center
8 cracked plane in tension (CC(T)) and different tioe
16 ‘ ‘ ‘ ‘ SEN(T) specimgn, which are characterized by theesam
o 400 800 1200 1600 material properties;
J [N/m] - the Q-parameter is a function of the material properties
Fig. 13. Sample numerical results obtained for SEN(T) speans: its value depends on the work-hardening exponemich
the influ_ence of t_he yield stress & trajectories the yield stressg;
for specimens with crack lengé#w=0.20 — if the crack length decrease th@rstress reaches more
and for power exponents-20 .
negative value for the external load.

SEN(T) plane strain

W=40mm a/W=0.50

n=5 v=0.30 E=206000MPa
0o —%— 0,=315MPa (0,/E=0.00153)
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