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Abstract: In the paper the short theoretical backgrounds about elastic-plastic fracture mechanics were presented 
and the O’Dowd-Shih theory was discussed. Using ADINA System program, the values of the Q-stress determined for vari-
ous elastic-plastic materials for SEN(T) specimen – single edge notched plates in tension – were presented. The influence 
of kind of the specimen, crack length and material properties (work-hardening exponent and yield stress) on the Q-parameter 
were tested. The numerical results were approximated by the closed form formulas. Presented in the paper results are com-
plementary of the two papers published in 2007 (Graba, 2007) and in 2010 (Graba, 2010), which show and describe influence 
of the material properties and crack length for the Q-stress value for SEN(B) and CC(T) specimens respectively. Presented 
and mentioned papers show such catalogue of the Q-stress value, which may be used in engineering analysis for calculation 
of the real fracture toughness. 

 

1. INTRODUCTION TO ELASTIC-PLASTIC 
FRACTURE MECHANICS 

In 1968 J. W. Hutchinson (ADINA 8.4.1, 2006a) pub-
lished the fundamental paper, which characterized stress 
fields in front of a crack for non-linear Ramberg-Osgood 
(R-O) material in the form: 
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where � and �	are polar coordinates of the coordinate  
system located at the crack tip, ��� 	are the components 
of the stress tensor, � is the J-integral, � is R-O exponent,  
� is R-O constant, σ0 is yield stress, �� is strain related to 
�� through �� = ��/	. Functions �
��(�,�), ��(�) must be 
found by solving the fourth order non-linear homogenous 
differential equation independently for plane stress 
and plane strain (Hutchinson, 1968). Equation (1) is com-
monly called the “HRR solution” (Fig. 1).  

The HRR solution includes the first term of the infinite 
series only. The numerical analysis shown, that results 
obtained using the HRR solution are different from the 
results obtained using the finite element method (FEM) - 
see Fig. 2. To eliminate this difference, it’s necessary to use 
more terms in the HRR solution. 

In 1985 Li and et. (Li and Wang, 1985) proposed the 
another stress field description, which was used two terms 
in the Airy function. They obtained the second term 
of the asymptotic expansion for the two materials described 
by two different work-hardening exponent: n=3 and n=10. 
Next, they compared their results with the HRR fields and 
FEM results. Their analysis shown, that using the two term 
solution to describe the stress field near the crack tip, brings 
closer analytical results to FEM results. Two term solution 
much better describes the stress field near the crack tip, 
and the value of the second term, which may not to be neg-

ligible depends on the material properties and the geometry 
specimen. 

 
Fig. 1. The crack opening stress distribution for elastic-plastic 

   materials, obtained using the HRR solution 

In 1993 Yang and et. (Yang et al., 1993)  using the Airy 
function with the separate variables in the infinite series 
form, proposed, that stress field near the crack tip may be 
described by the Eq. (2) in the infinite series form: 
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where k is the number of the series terms, Ak is the ampli-
tude for the k series term, �̅ is the normalized distance from 
the crack tip, sk is power exponent for the k series term,  

and �
��
(�) is “stress” function. 

 Using only three terms of the infinite series, Eq. (2) 
may be written in the following form: 
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where the �
��
(�)functions must be found by solving the 

fourth order non-linear homogenous differential equation 
independently for plane stress and plane strain, s is the 
power exponent, which is identical to the one in the HRR 
solution (s may be calculated as s=-1/(n+1)), t is the power 
exponent for the second term of the asymptotic expansion, 
which must be found numerically by solving the fourth 
order non-linear homogenous differential equation inde-
pendently for plane stress and plane strain, �̅ is the normal-
ized distance from the crack tip calculated as �̅ = �/(�/��), 
A1 is the amplitude of the first term of the infinite series 
evaluated as 
� = (�����)

��/(���), and A2 is the amplitude 
of the second term, which is calculated by fitting the Eq. (3) 
to the numerical results of the stress fields close to crack 
tip. 

 
Fig. 2. Comparison the FEM results and HRR solution  

  for plane stress and plane strain for center cracked plate  
  in tension (CC(T)) 

In 1993 Shih et al. (1993) proposed simplified solution. 
They assumed, that the FEM results are exact and com-
puted the difference between the numerical and HRR re-
sults. They proposed, that the stress field near the crack tip, 
may be described using only two terms, by following equa-
tion: 
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where ����(�,�) are functions evaluated numerically,  
q is the power exponent, which value changes in the range 
(0; 0.071), and Q is the parameter, which is the amplitude 
of the second term asymptotic solution. The Q-parameter is 
commonly called the “Q-stress”. 

O’Dowd and Shih (1991, 1992), tested the Q-parameter 

in the range J/σ0<r<5J/σ0 near the crack tip. They showed, 
that the Q-parameter weakly depend on crack tip distance 
in the range of the ±π/2 angle. O’Dowd and Shih proposed 
only two terms to describe the stress field near the crack tip: 
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Fig. 3. The comparison of the J-Q trajectories  

  for CC(T) and  SEN(B) 

To avoid the ambiguity during the calculation of the Q-
stress, O’Dowd and Shih (O’Dowd, Shih, 1991), (O’Dowd, 
Shih, 1992) have suggested, where the Q-stress may be 
evaluated. It was assumed, that the Q-stress should be com-
puted at distance from crack tip, which is equal to r=2J/σ0 
for θ=0 direction. O’Dowd and Shih postulated, that for 
θ=0 the function ��		(� = 0) is equal to 1. That’s why, the 
Q-stress may be calculated from following relationship: 
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where (σθθ)FEM is the stress value calculated using FEM 
and (σθθ)HRR is stress value evaluated form HRR solution. 
During analysis, O’Dowd and Shih shown, that in the range 
of θ=±π/4, the following relationships take place: ���		 ≈

���

, ��		/��

 ≈ 1 and ���
	 ≈ 0 (because ���
	 <<

���		). Thus, the Q-stress value determines the level of the 
hydrostatic stress. For plane stress, the Q-parameter is equal 
to zero, but for plane strain, the Q- parameter is in the most 
cases smaller than zero (Fig. 3). 

2. DISCUSSION ABOUT ENGINEERING 
APPLICATIONS OF THE J-Q THEORY 

To describe the stress field near the crack tip for elastic-
plastic materials, the HRR solution is most often used  
(Eq. 1). However the results obtained are usually overesti-
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mated and analysis is conservative. The HRR solution  
includes the first term of the infinite series only.  

The numerical analysis shown, that results obtained us-
ing the HRR solution are different from the results obtained 
using the finite element method (FEM) – see Fig. 2. 
To eliminate this difference, it’s necessary to use more 
terms in the HRR solution, for example the J-A2 theory 
suggested by Yang and et. (Yang et al., 1993), or the 
O’Dowd and Shih approach – the J-Q theory (O’Dowd, and 
Shih, 1991). 

For using the O’Dowd approach, engineer needs only 
the Q-stress distribution, which must be calculated numeri-
cally. That’s why O’Dowd approach is easier and pleasan-
ter in use in contrast to J-A2 theory. Using the J-A2 theory 
proposed by Yang and el., first engineer must solve fourth 

order nonlinear differential equation to determine the �
��
(�) 

function and the t power exponent. Next, the engineer using 
FEM results calculated the A2 amplitude by fitting the Eq. 3 
to numerical results.  

 The J-Q theory found application in European Engi-
neering Programs, like SINTAP (Sintap, 1999) or FITNET 
(Fitnet, 2006). The Q-stress are applied under construction 
the fracture criterion and to assessment the fracture tough-
ness of the structural component. Thus O’Dowd theory has 
practical application in engineering issues. 

Sometimes using the J-Q theory may be limited, be-
cause there is no value of the Q-stress for given material 
and specimen. Using any fracture criterion, for example 
proposed by O’Dowd (O’Dowd, 1995), or another criterion, 
the engineer can estimate fracture toughness quit a fast, 
if the Q-stress are known. Literature doesn’t announce the 
Q-stress catalogue and Q-stress value as function of exter-
nal load, material properties or geometry of the specimen. 
In some articles, the engineer may find the J-Q graphs for 
certain group of material.  

The best solution will be, origin the catalogue of the J-Q 
graphs for materials characterized by various yield strength, 
different work-hardening exponent. Such catalogue should 
take into consideration the influence of the external load, 
kind of the specimen (SEN(B) specimen – bending, SEN(T) 
specimen – tension) and geometry of the specimen, too. For 
SEN(B) and CC(T) specimens, such catalogues were pre-
sented by Graba in 2007 (Graba, 2007) and in and 2010 
(Graba, 2010) respectively. 

In the next parts of the paper, the values of the Q-stress 
will be determined for various elastic-plastic materials for 
single edge notched specimens in tension (SEN(T)). The 
SEN(T) specimen is the basic structural element, which is 
used in the FITNET procedures to modeling real construc-
tions. All results will be approximated by the closed form 
formulas. 

3. DETAILS OF NUMERICAL ANALYSIS 

In the numerical analysis, the single edge notched spe-
cimens in tension (SEN(T)) were used (Fig. 4). Dimensions 
of the specimens satisfy the standard requirement which 
is set up in FEM calculation - L≥2W, where W is the width 
of the specimen and L is the measuring length of the speci-
men. Computations were performed for plane strain using 
small strain option. The relative crack length was equal to 

a/W={0.20, 0.50, 0.70} where a is a crack length and the 
width of specimens W was equal to 40mm. For this case, 
the measuring length L satisfied the condition L≥80mm.  

 
  

Fig. 4. The single edge notched specimen in tension (SEN(T))  
   used in the numerical analysis 

The choice of the SEN(T) specimen was intentional, be-
cause the SEN(T) specimens are used in the FITNET pro-
cedures to modeling real structural elements. Also 
in FITNET procedures, the limit load and stress intensity 
factors solutions for SEN(T) specimens are presented. 
However in the EPRI procedures (Kumar et al., 1981), 
the hybrid method for calculation the J-integral is given. 
Also some  laboratory test in order to determine the critical 
values of the J-integral, may be done using the SEN(T) 
specimen.  

Computations were performed using ADINA SYSTEM 
8.4 (Adina, 2006a, b). Due to the symmetry, only a half 
of the specimen was modeled. The finite element mesh was 
filled with the 9-node plane strain elements with nine (3×3) 
Gauss integration points. The size of the finite elements in 
the radial direction was decreasing towards the crack tip, 
while in the angular direction the size of each element was 
kept constant. The crack tip region was modeled using 50 
semicircles. The first of them, was at least 20 times smaller 
then the last one. It also means, that the first finite element 
behind to crack tip is smaller 2000 times than the width 
of the specimen. The crack tip was modeled as quarter 
of the arc which radius was equal to rw=1⋅10-6m (it's 
(0.000025×W). The whole SEN(T) specimen was modeled 
using 323 finite elements and 1353 nodes. External load 
was applied to bottom edge of the specimen. The example 
finite element model for SEN(T) specimen used in the nu-
merical analysis is presented on Fig. 5. 

In the FEM simulation, the deformation theory of plas-
ticity and the von Misses yield criterion were adopted. In 
the model the stress–strain curve was approximated by the 
relation:   
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where α=1. The tensile properties for the materials which 
were used in the numerical analysis are presented below 
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in the Tab.1. In the FEM analysis, calculations were done 
for sixteen materials, which were differed by yield stress 
and the work hardening exponent. 

a) 

 
b) 

 
 Fig. 5. a) The finite element model for SEN(T) specimen  

   used in the numerical analysis; b) The finite elements 
   mesh near crack tip using in the numerical analysis 

Tab. 1. The mechanical properties of the materials used in  
numerical analysis and the HRR parameters for plane strain 

 σ0 
[MPa] 

E [MPa] ν ε0=σ0/E α n ( )0~ =θσθθ  In 

315 

206000 0.3 

0.00153 

1 

3 1.94 5.51 
500 0.00243 5 2.22 5.02 
1000 0.00485 10 2.50 4.54 
1500 0.00728 20 2.68 4.21 

The J-integral were calculated using two methods. 
The first method, called the “virtual shift method”, uses 
concept of the virtual crack growth to compute the virtual 
energy change. The second method is based on the  
J–integral definition:  
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C
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where w is the strain energy density, t is the stress vector 
acting on the contour C drawn around the crack tip, 
u denotes displacement vector and ds is the infinitesimal 
segment of contour C.  

In summary, in the numerical analysis 48 SEN(T) 
specimens were used, which were differed by crack length 
and material properties. 

4. ANALYSIS OF THE NUMERICAL RESULTS 

The analysis of the results obtained was made in the 
range J/σ0<r<6J/σ0 near the crack tip, and its shown, that 
the Q-stress decrease if the distance from the crack tip in-
crease (Fig. 6). If the external load increases, the Q-stress 
decreases and the difference between Q-stress calculated 
in the following measurement points increase (Fig. 6). If the 
crack length decrease then Q-stress reaches more negative 
value for the same J-integral level (Fig. 7).  

For the sake of the fact, that the Q-parameter, which 
is used in fracture criterion is calculated at distance equal 
to r=2J/σ0, it’s necessary to notice some comments about 
obtained results. If the yield stress increases, the Q-
parameter increase too, and it reflects for all SEN(T) 
specimen with different crack length a/W (Fig. 8). For 
smaller yield stress the J-Q trajectories shape up well 
lower and it’s observed faster changes of the Q-parameter 
if the external load is increase (Fig. 8).  

For SEN(T) specimens, the ambiguous behavior of the 
J-Q trajectories depending of the work-hardening expo-
nent is observed. For specimens with short cracks 
(a/W=0.20) and the same yield stress, for smaller values 
of the work-hardening exponent n (e.g. n≤5), the Q-stress 
become less negative (Fig. 9). For specimens with the 
normative crack length (a/W=0.50) or with the long cracks 
(a/W=0.70), the cutting of the J-Q trajectories was ob-
served (Fig. 10 and Fig. 11) - first the higher values of the 
Q-stress were observed for specimen characterized 
by strongly hardening material, but for increasing external 
load the reversal of the trend took place and the higher  
Q-stress were observed for specimens characterized 
by weakly hardening material. 

For short cracks the Q-stress value drops more rapidly 
then for long ones in the range of the small external load 
(Fig. 7). For specimen with long cracks (a/W=0.70), the 
another nature of the J-Q trajectories was observed than 
for specimen with relative cracks length a/W≤0.50 (Fig. 
7). It may be a consequence of the absence in the analysis 
of the stress field, the consideration of the bending stress 
near the crack tip, which was discussed by Chao et al., 
(2004). 
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Fig. 6. “The J-Q family curves” for SEN(T) specimen calculated 

at six distances r from crack tip 

 
Fig. 7. The influence of the crack length on J-Q trajectories  

for SEN(T) specimens 

 
Fig. 8. The influence of the yield stress on J-Q trajectories for 

SEN(T) 

 

 
Fig. 9. The influence of the work hardening exponent on J-Q  

trajectories for SEN(T) specimens (a/W=0.20, σ0=315MPa) 

 
Fig. 10. The influence of the work hardening exponent on J-Q  

 trajectories for SEN(T) specimens (a/W=0.50, σ0=500MPa) 

 
Fig. 11. The influence of the work hardening exponent on J-Q  

 trajectories for SEN(T) specimens (a/W=0.70, σ0=1000MPa) 
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5. APPROXIMATION OF THE NUMERICAL 
RESULTS  

In the literature the mathematic formulas, to calculate 
the Q-stress taking into consideration the level of external 
load, material properties and geometry of the specimen 
are not known for the most of the cases. Presented in the 
paper numerical computations provided with the J-Q cata-
logue and the universal formula (9), which allows to cal-
culate the Q-stress and take into consideration all the 
parameters influencing the value of the Q-stress. All re-
sults, were presented in the Q=f(log(J/(a⋅σ0))) graph 
forms. Next all graphs were approximated by the simple 
mathematical formulas, taking the material properties, 
external load and geometry specimen into consideration. 
All the approximations were made for results obtained at 
the distance r=2.0⋅J/σ0. Each of the obtained trajectories 
Q=f(log(J/(a⋅σ0))), was approximated by the third order 
polynomial in the form:  
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where the A, B, C, D coefficients depend on the work-
hardening exponent n, yield stress σ0 and crack length 
a/W. The rank of the fitting the formula (9) to numerical 
results for the worst case was equal R2=0.95. For different 
work hardening exponents n, yield stresses σ0 and ratios 
a/W, which were not include in the numerical analysis, the 
coefficients A, B, C and D may be evaluated using the 
linear or quadratic approximation. Results of the approxi-
mation (all coefficients of the approximation numerical 
results by Eq. (9)) are presented in Tables 2-4. 

Tab. 2. The coefficients of equation (9) for SEN(T) specimen  
             with the crack length a/W=0.20 

σ0 = 315MPa σ0/E = 0.00153 
n A B C D R2 
3 -2.476 -2.221 -1.165 -0.228 0.993 
5 -2.128 -1.722 -0.999 -0.223 0.997 
10 -1.752 -0.991 -0.604 -0.163 0.998 
20 -1.677 -0.683 -0.379 -0.121 0.997 

σ0 = 500MPa σ0/E = 0.00243 
n A B C D R2 
3 -1.618 -0.876 -0.397 -0.087 0.986 
5 -1.105 0.104 0.119 -0.008 0.996 
10 -1.365 -0.139 0.029 -0.026 0.996 
20 -1.465 -0.145 0.075 -0.017 0.996 

σ0 = 1000MPa σ0/E = 0.00485 
n A B C D R2 
3 -1.875 -1.438 -0.651 -0.119 0.958 
5 -1.198 0.007 0.217 0.037 0.990 
10 -1.065 0.552 0.622 0.116 0.995 
20 -1.163 0.533 0.654 0.122 0.996 

σ0 = 1500MPa σ0/E = 0.00728 
n A B C D R2 
3 -1.601 -1.099 -0.477 -0.089 0.982 
5 -1.469 -0.537 -0.056 -0.002 0.990 
10 -1.401 -0.078 0.328 0.080 0.996 
20 -1.486 -0.085 0.364 0.088 0.996 

Tab. 3. The coefficients of equation (9) for SEN(T) specimen  
with the crack length a/W=0.50 

σ0 = 315MPa σ0/E = 0.00153 
n A B C D R2 
3 -2.743 -1.606 -0.456 -0.059 0.990 
5 -2.909 -1.516 -0.334 -0.038 0.990 
10 -0.621 1.913 1.291 0.205 0.996 
20 0.238 3.364 2.03142 0.320 0.996 

σ0 = 500MPa σ0/E = 0.00243 
n A B C D R2 
3 -3.927 -3.615 -1.435 -0.209 0.982 
5 -3.383 -2.414 -0.728 -0.088 0.995 
10 -2.009 -0.132 0.435 0.094 0.997 
20 -1.810 0.450 0.811 0.160 0.997 

σ0 = 1000MPa σ0/E = 0.00485 
n A B C D R2 
3 -4.009 -4.031 -1.629 -0.229 0.977 
5 -2.662 -1.869 -0.545 -0.059 0.997 
10 -2.773 -1.760 -0.403 -0.032 0.996 
20 -2.971 -1.789 -0.312 -0.006 0.997 

σ0 = 1500MPa σ0/E = 0.00728 
n A B C D R2 
3 -2.612 -2.335 -0.943 -0.138 0.994 
5 -2.505 -1.895 -0.629 -0.078 0.999 
10 -2.559 -1.688 -0.420 -0.035 0.996 
20 -2.357 -1.041 0.048 0.059 0.997 

Fig. 12 presents the comparison of the numerical results 
and their approximation for J-Q trajectories for several 
cases of the SEN(T) specimens. Fig.s 13-15 presents in the 
graphical form some numerical results obtained for SEN(T) 
specimens in plain strain. All results are presented using the 
J-Q trajectories. 

Tab. 4. The coefficients of equation (9) for SEN(T) specimen  
with the crack length a/W=0.70 

σ0 = 315MPa σ0/E = 0.00153 
n A B C D R2 
3 -6.051 -4.762 -1.512 -0.179 0.989 
5 -3.287 -0.872 0.171 0.049 0.991 
10 0.290 3.710 2.045 0.294 0.993 
20 4.424 8.931 4.175 0.574 0.993 

σ0 = 500MPa σ0/E = 0.00243 
n A B C D R2 
3 -8.575 -8.072 -2.818 -0.341 0.989 
5 -10.470 -9.908 -3.417 -0.410 0.997 
10 -11.036 -9.958 -3.227 -0.365 0.998 
20 -0.753 2.846 1.979 0.325 0.993 

σ0 = 1000MPa σ0/E = 0.00485 
n A B C D R2 
3 -6.703 -6.471 -2.323 -0.286 0.985 
5 -7.237 -6.937 -2.456 -0.301 0.996 
10 -7.642 -7.198 -2.481 -0.297 0.998 
20 -8.527 -8.058 -2.747 -0.325 0.997 

σ0 = 1500MPa σ0/E = 0.00728 
n A B C D R2 
3 -5.580 -5.462 -2.021 -0.256 0.976 
5 -5.819 -5.576 -2.011 -0.250 0.995 
10 -5.990 -5.608 -1.961 -0.238 0.998 
20 -7.453 -7.315 -2.617 -0.322 0.999 

 



acta mechanica et automatica, vol.5 no.2(2011) 

 33

 
Fig. 12. Comparison of the numerical results and their approximation 

for J-Q trajectories for SEN(T) specimens with relative crack 
length a/W=0.50: σ0={315, 500}MPa, n={5, 10} 

 
Fig. 13. Sample numerical results obtained for SEN(T) specimens: 

the influence of the yield stress on J-Q trajectories  
for specimens with crack length a/W=0.20  
and for power exponents n=20 

 
Fig. 14. Sample numerical results obtained for SEN(T) specimens: 

the influence of the yield stress on J-Q trajectories  
for specimens with crack length a/W=0.50  
and for power exponents n=5 

 
Fig. 15. Sample numerical results obtained for SEN(T) specimens: 

the influence of the yield stress on J-Q trajectories  
for specimens with crack length a/W=0.70  
and for power exponents n=10 

6. SUMMARY  

In the paper the values of the Q-stress were determined 
for various elastic-plastic materials for single edge notched 
specimens in tension (SEN(T)). The influence of the yield 
strength, the work-hardening exponent and the crack length 
on the Q-parameter was tested. The numerical results were 
approximated by the closed form formulas. The most im-
portant results are summarized as follows: 
− the Q-stress depends on geometry and external the load; 

different values of the Q-stress are obtained for center 
cracked plane in tension (CC(T)) and different for the 
SEN(T) specimen, which are characterized by the same 
material properties; 

− the Q-parameter is a function of the material properties; 
its value depends on the work-hardening exponent n and 
the yield stress σ0; 

− if the crack length decrease then Q-stress reaches more 
negative value for the external load. 
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