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Abstract: The paper considers the stability problem of lintsare-invariant continuous-time systems of fracéiborder,
standard and positive, described by the state spadel. Review of previous results is given and same methods for sta-
bility checking are presented. Considerations &usetitated by numerical examples and results of egensimulations.

1. INTRODUCTION

In the last decades, the problem of analysis anthsy
sis of dynamical systems described by fractionalepr
differential (or difference) equations was consaderin
many papers and books. For review of the previesslts
see, for example, the monographs (Caponetto eR@L0;
Das, 2008; Diethelm (2010kaczorek, 2009, 2011a; Kil-
bas et al., 2006; Monje et al., 2010; OstalczylQ®2®Pod-
lubny, 1994, 1999; Sabatier et al., 2007).

The problems of stability and robust stability ofelar
fractional order continuous-time systems were siidi
among others in Matignon (1996, 1998), Bustowid20@a,
2008b, 2009), Petras (2008, 2009), Radwan et DR
Sabatier et al. (2008, 2010), Tavazoei and Her@92@nd
in Ahn et al. (2006), Ahn and Chen (2008), Bustawic
(2008c), Lu and Chen (2009), Tan et al. (2009), atigu
and Yisheng (2010), respectively.

The new class of the linear fractional order system
namely the positive systems of fractional order w@ssid-
ered by Kaczorek (2008a, 2008b, 2009, 2011a, 2011b)

The aim of the paper is to give the review of thethm
ods for stability analysis of fractional continuetirse lin-
ear systems described by the state-space modeirasen-
tation of some new results. The standard and pesitac-
tional order systems will be considered.

2. PROBLEM FORMULATION

Consider a linear continuous-time system of frawtlo
order described by the state equation

oD (1) = AX(t) + Bu(t), (1)

wherex(t) € R, u(t) € R™, A € R™", B € R™™ and
1t x(P(ydr

oD¢ X(t) = O 1<asp, )

F(p-a)p(t-1)%*P

is the Caputo definition for fractionat-order derivative,

wherex®(t) = d"x(t)/dt?, pis a positive integer and

M(a) = [e 't at ©)
0

is the Euler gamma function.
Definition (3) can be written in the equivalentror

M (a) = lim in® .
noooa(a+1)---(a+n)

(3a)

From (2) forp = 1 andp = 2 we have, respectively

a o1t x(l)(T)
oDy x(t) = ri-a) (I)(t Y

dr, O<a<1l (4)

dn 1 tx@mydr
oDrx(®) = I'(2—0()é(t_T)a—1’

The Laplace transform of the Caputo fractional deriv
tive has the form

l<a<2 (5)

L{oDEX )} = "F(s) - 3 % *xkD ("), (6)
k=1

For zero initial conditions, the Laplace transfoi@h re-
duces to

L{oDr' X 1)} =s"F (s).

Definition 1. The fractional system (1) will be called posi-
tive (internally) if x(t) € R} for any initial condition
x(0) € R} and for all inputsc(t) € RG,t = 0.

Positivity condition of the system (1) is known wnl
inthe case of fractional ordes € (0,1]. In Kaczorek
(2008a, 2008b), see also Kaczorek (2009, 2011a)fdh
lowing theorem has been proved.

Theorem 1. The fractional system (1) witl) < a <1
is positive if and only if

(6a)
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AOM,, BOOF™, 7)
whereM,, — the set ol X n real Metzler matrices (matri-
ces with non-negative off-diagonal entrieB].*™ — the set
of n X m real matrices with non-negative entries.

Characteristic function of the fractional systemiglthe
fractional degree polynomial of the form

W(s) =detc®l - A) =a,s™ +a,45" V% + +a;.  (8)
The associated natural degree polynomial has time fo
W) =a A\ +a, A"+ +ah +ag, A=s%. 9)

The polynomial (8) is a multivalued function whose
domain is a Riemann surface. In general, this sarfes
an infinite number of sheets and the fractionalypomial
(8) has an infinite number of zeros. Only a finitember
of which will be in the main sheet of the Riemanmface.
For stability reasons only the main sheet defingd b
—m < args < m can be considered (Petras, 2008, 2009).

From the theory of stability of linear fractionatder
systems given by Matignon (1996, 1998) and Pe2&6§,
2009), we have the following theorem.

Theorem 2.The fractional order system (1) is stable if and
only if the fractional degree characteristic polgnial (8)
has no zeros in the closed right-half of the Riemeom-
plex surface, i.e.

w(s) =dets®| — A) 0 for Res= 0, (10)
or equivalently, the following condition is satisi

n .
[argh; (A) |>0(E, i=12..,n, (12)

wherel; (4) is thei-th eigenvalues of matri&.

From Radwan et al. (2009) it follows that the frantl
system with the characteristic polynomial (8) isstable
for all a > 2. Therefore, in this paper we consider the frac-
tional system (1) of fractional ordere (0,2).

The stability regions of the system (1), described
by (11) are shown in Fig. 1 and 2 fdi<a<1
andl < a < 2, respectively. Parametric description of the
boundary of the stability regions has the form
(j0* =lol" ™2, wh(-ww). (12)

The polynomial (8) withw = 1 is a natural degree poly-
nomial and from (12) foe = 1 we have that the imaginary
axis of the complex plane is the boundary of tlabitity
region.

The aim of this paper is to give the review of theth-
ods for stability analysis of the fractional systefh)
and presentation of some new results. We consider t
stability problem of standard and positive fracéiborder
systems.

3. STABILITY OF FRACTIONAL SYSTEMS

The following lemma can be used to checking the- con
dition (11) of Theorem 2.
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Lemma 1. The fractional order system (1) is stable
if and only if

1L
y>C(E, (13)
where

y =min [argh; (A)| (14)

and}; (A) is thei-th eigenvalue oA.
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Fig. 1. Stability region fol0 < a < 1
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Fig. 2. Stability region forl < a < 2

From Theorem 2, Lemma 1 and Fig. 1 and 2 we have
the following important lemmas and remark.
Lemma 2. The fractional system (1) is unstable for all
a € (0,2) if the matrixA has at least one non-negative real
eigenvalue. In particular, this holdsdiét A = 0.
Lemma 3. Assume that the state matéxhas no real non-
negative eigenvalues. Then the fractional systeh (1
is stable if and only ifa € (0, ay), where o, = 2y/n
andy is computed from (14).
Remark 1. If the fractional system (1) is stable for a fixed
a € [1,2) then it is also stable for all fractional orders
a € (0,1].



3.1. Stability of system of fractional ordera € [1, 2)

The system (1) of fractional ordere [1,2) is stable
if and only if all eigenvalues A lie in the stability region
shown in Fig. 2. Hence, this system may be unstiablbe
case of negative real parts of all eigenvalues africn A
if argh;(4) < an/2,i=1,2,..,n.

The following lemma can be used to stability chagki
of the fractional system (1) of ordere [1,2).

Lemma 4 (Anderson et al., 1974; Davison and Ramesh,

1970). The eigenvalues of anx n matrix A lie in the sec-
tor shown in Fig. 2 if and only if the eigenvalues
of 2n X 2n matrix

~ {Acosé —Asiné}

= (15)
Asind Acosd

have negative real parts, whére= (a« — 1)m/2.

From the above and the result given in (Hostetter,

1975), see also (Tavazoei and Haeri, 2009) it ¥edldhat
if p(s) = det(sI — A) then

det@ - A) = p(se®) p(se™%), 8=(a-n/2.

Based on Lemma 4, the following theorem has been

proved in Tavazoei and Haeri (2009).

Theorem 3. The fractional system (1) with < a <2
is stable if and only if the eigenvalues of the nxafl have
negative real parts, where

Ao Asin(art/2)  Acos@Tt/2)
- Acos@t/2) Asin@rt/2) |

(16)

Proof. Substitutiond = (a — 1)m/2 in (15) gives (16).
The proof follows directly from Theorem 2 and Lem#ha

In Molinary (1975) it has been proved that if thesest
positive definite Hermitian matricgs> 0 andQ > 0 such
that
BPA+R ATP=-Q, (17)
wheref = 1 + j& with tan(mt — art/2) = n/¢ (equivalently,
tan(m/2 — 8) = n/¢), then all eigenvalues &k are within
the stable area shown in Fig. 2. From the aboveTdrab-
rem 2 one obtains the following theorem (see albo At.
al. (2006), Sabatier et al. (2008, 2010)).

Theorem 4. The fractional system (1) with < a <2
is stable if and only if there exist positive dé@gnHermi-
tian matrices? > 0 andQ > 0 such that (17) holds.

The stability region shown in Fig. 2 is convex. Tée
fore, to the stability analysis of the system (1)thw
1 < a < 2 the LMI based conditions can be applied.

In Chilali et al. (1999) it has been shown that eligen-
values of matrixA lie in the sector shown in Fig. 2
if and only if there exists a matr& = PT > 0 such that

(AP+PAT)sin@®) (AP -PAT)cosg) <0

(PAT - AP)cos@) (AP+PAT )sin(©) (18)

whered = m — amn/2.
Substitution® = m— am/2 in (18) gives
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(AP+PAT )sin(@mt/2) (AP -PAT)cos@m/2)

T = <0. (19)
(PA' — AP)cos@mt/2) (AP +PA" )sin(art/2)
Hence, we prove the following theorem.
Theorem 5. The fractional system (1) with < a <2
is stable if and only if there exists a matix= PT > 0
such that the condition (19) holds.

The same criterion has been obtained by Sabatial: et
(2008, 2010). In this criterion, the condition (i8)written
in the equivalent form

(ATP+PA)sin@m/2) (ATP-PA)cos@r/2)

T - ) <0.(19a)

(PA-A'P)cos@rt/2) (A'P+PA)sin(art/2)

To checking the condition (19) (or (19a)), a LMhsy
can be used.

3.2. Stability of system of fractional ordera € (0, 1]

The system (1) of fractional ordere (0,1] is stable
if and only if all eigenvalues ok lie in the stability region
shown in Fig. 1. Hence, this system may be stablthé
case when not all eigenvalues Aflie in open left half-
plane. Moreover, this system may be stable wheaigdin-
values of the matriA are complex with positive real parts.
From the above we have the following simple suéfiti
condition for the stability.
Lemma 5. The fractional system (1) withh < a <1
is stable if all eigenvalues & lie in open left half-plane
of the complex plane.
Using Lemma 4 and taking into account that theesyst
(1) with 0 < a« <1 is unstable if all eigenvalues &f lie
in the instability region shown in Fig. 1, we olotahe fol-
lowing theorem.
Theorem 6 (Tavazoei and Haeri, 2009). The fractional
system (1) with0 < a < 1 is unstable and all eigenvalues
of A lie in the instability region shown in Fig. 1 ihd only
if the eigenvalues of have negative real parts, where

— | —Asin(m/2) Acosft/2)
- Acos@T/2) - Asin@t/2) |

(20)

Proof. If all eigenvalues ofA lie in the instability sector
shown in Fig. 1, then all eigenvalues & satisfy the ine-
quality
largh; (-A) [> n—ag, i=12..n, (21)
i.e. lie in sector shown in Fig. 2 if we considengke
m—amn/2 with a € (0,1] instead of angleam/2. Then
8§ = (1 — a)m/2. The proof follows directly from Lemma 4
for 6 = (1 — a)m/2 and substitution-A instead ofA.

Based on instability analysis, the following coruafit
has been given in Sabatier et al. (2008, 2010).
Theorem 7. The fractional system (1) witl) < a <1
is stable if and only if there does not exist any-megative
rank one complex matri® such that

rAQ+QATF =0, (22)
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where r = sin(ant/2) + jcos(an/2) and 7 denotes the
complex conjugate af

The stability region shown in Fig. 1 is not convex.
Therefore, to the stability analysis of the frantbsystem
(1) with 0 < a < 1 the LMI conditions can not be applied.

In Sabatier et al. (2008, 2010) the following sti#fnt
and necessary and sufficient conditions have beared.
Theorem 8. The fractional system (1) with) < a <1
is asymptotically stable if there exists a matfix> 0 such
that
(AVHTP+pAl®) <o, (23)
Theorem 9. The fractional system (1) with < a <1
is stable if and only if there exists a symmetri@trix
P > 0 such that

(_ - A)ll(z—a))T b4 P(— (~A)ME-) )< 0.

Based on the Generalized LMI (GLMI), in Sabatier
et al. (2008, 2010) the following criterion has begven.
Theorem 10. The fractional system (1) with <a <1
is stable if there exist positive definite compleatrices
X, = X7 andX, = X; such that

(24)

FXAT +1AX; +1X,AT +rAX, <0, (25)

wherer = exp (j(1 — a)m/2).
3.3. Generalization of frequency domain methods

The frequency domain methods for stability analysis
of fractional systems described by the transferction
have been proposed in Bustowicz (2008a, 2009),ats®

instead of the polynomial (8), where,(s) is stable

the reference fractional polynomial of degreg i.e.
W (S) #0 for Res= 0. (28)

The reference fractional polynomial can be chosen
in the form

w; () =(s+¢c)®", c¢>0. (29)

Theorem 12. The fractional system (1) with < o < 2
is stable if and only if

Aarg Y(jw) =0,
f](—00,00)

(30)

where Yy(jw) = Yi(s) for s =jw and Y(s) is defined
by (27), i.e. plot of the functiods(jw) does not encircle
or cross the origin of the complex planesasuns from—oo
to oo,

Plot of the functiony(jw), w € (—o, ), is called
the generalised modified Mikhailov plot.

From (8), (27) and (29) we have

W)= lm p(ie)=1 (31)
and
vo ==L, (32)

From (32) it follows thaty(0) < 0 if det (—4) < 0.
Hence, from Theorem 12 we have the following imaott
lemma.

Lemma 6. If det (—A) < 0 then the fractional system (1)
is unstable for allt € (0,2).
Lemma 6 also follows from the Hurwitz stability tes

Kaczorek (2011a, Chapter 9). These methods can be ap pecause ifdet (—A4) < 0 then not all coefficients of the

plied to the system (1) of any fractional ordeg (0,2).

By generalization of the results of Bustowicz (2808
2009) to the case of fractional system (1) we obthie
following methods for stability checking.

Theorem 11.The fractional system (1) with characteristic
polynomial (8) is stable if and only if

Aargw(jw) =ntt/2,
O<w<oo

(26)

wherew(jw) = w(s) for s = jw, i.e. plot of the function
w(jw) starts forw =0 in the point w(0) = det (—A4)
and with w increasing from 0 teo turns strictly counter-
clockwise and goes through quadrants of the complex
plane.

Plot of the functionw(jw) is called the generalised
(to the class of fractional degree polynomials) Mikov
plot.

Checking the condition (26) is difficult in general
(for large values ofn), becausew(jw) quickly tends to
infinity as w grows toco.

To remove this difficulty, we consider the ratiofahc-
tion

dets”l - A
W ()

W(s) = (27)
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characteristic polynomial & are non-zero and positive.

3.4. Stability of positive systems

Now we consider the stability problem of the posti
system (1) of fractional ordex € (0,1]. In this case, ac-
cording to Theorem 1, the condition (7) holds, ite ma-
trix A has non-negative off-diagonal entries.

Positive linear systems are sub-class of lineatesys.
Therefore, the stability conditions given in thiapger can
also be applied to the stability analysis of thaifie sys-
tem (1).

Stability conditions of positive natural number t&yss,
continuous-time and discrete-time, are very sinipleom-
parison with the stability conditions of standargstems
(Farina and Rinaldi, 2000; Kaczorek, 2000, 2002)erE-
fore, we consider the possibilities of simplificati of the
stability conditions of standard fractional systéi) with
a € (0,1].

From Theorems 1 and 2 it follows that the positys-
tem (1) witha € (0,1) is stable if and only if all eigenval-
ues of the Metzler matri lie in the stability region shown
in Fig. 1.

From (Farina and Rinaldi, 2000; Kaczorek, 2011b)
we have that the dominant eigenvalue (eigenvaldk thie



largest real part) of the Metzler matrix is reahefefore,

the positive system (1) witk € (0,1) is stable if and only
if all eigenvalues of the Metzler matr&have negative real
parts.

Hence, using the well-known stability conditions
of positive systems given in Kaczorek (2000, 2002),
we obtain the following simple necessary and sigfit
condition for the asymptotic stability.

Lemma 7. The positive system (1) is asymptotically stable

for all @ € (0,1) if and only if one of the following equiva-

lent conditions holds:

1. eigenvaluest,, 4,, ..., A, of the matrixA have negative
real parts,

2. all the leading principal minois,, A,, ..., A, of the ma-
trix —A are positive,

3. all the coefficients of the characteristic polynami
of the matrixA are positive.

It is easy to see that ll € M,, then the matrix (20)
is not a Metzler matrix. This means that is not gile
simplification of the condition given in Theoremf& the
positive system (1).

4. ILLUSTRATIVE EXAMPLES

Example 1.Check stability of the system (1) with

A= 0 1 a, b00 (33)
- —b —a ] 9 .
Eigenvalues oA are as follows
-a+va’-4b
Ap=""T7—7. (34)

If a®> = 4b then A, = —a/2 Hence, from Lemmas 2
and 3 we have the following:
- if a < 0 then eigenvalues & are positive and the sys-
tem is unstable for all fractional orders
- if a> 0 then eigenvalues of are negative and the
system is stable for all fractional order€ (0,2).
If

a?>4b and-a+va?-40>0 or —a-va’-4b =0, (35)

then from Lemma 2 it follows that the system istahke
for all valuesa € (0,2).
If

a’>4p and—aix/az—4b<0,

then from Lemma 5 it follows that the system isbka
for all a € (0,1).

If a2 < 4b then the matrix (33) has two complex eigen-
values

(36)

~a+ jV4b-a?®
A2 =+ (37)
If a < 0 then from (14) and (37) we have
y=arctany4t -1, t1=hb/ a2, (38)
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and
2 _2
Og :]—Ty:EarctanMT -1

From Lemma 3 it follows that the system with < 4b
anda < 0 is stable for anyx € (0, ay) where o, is com-
puted from (39).

Similarly, we can show that # > 0 anda? < 4b then
the system is stable for anye (0, y,) where

(39)

a01:3y:%(n—arctan\/4t—l), 1=b/a’. (40)

T
Plots of a,(t) and ay,(t) for T € [1,10] are shown
in Fig. 3. It is easy to check that, - 1 and ay; » 1

if T— oo,

14

13— - —— 7 —— —

|
|
I
1 2

Fig. 3. Plot of the functions (39) and (40) wse [1,10]

From Fig. 3 and (39), (40) it follows that, < a,,
for all fixed .
If T=4(i.e.b = 4a?), for example, then the system
- with a<0 is stable if and only ifa€ (0,q),
o, = 0.8391
— with a > 0 is stable if and only itx € (0,a,,), Where
®p; = 1.1609.
Assume that the output equation and the input matri
of the system (1), (33) are as follows

y(t) =Cx(t), C=[L 0], B:m.

Then, the transfer function has the form

1 1
det®l -A) s +as® +b

G(s)=C(s"I -A)B=

Step responses of the system for=4, a =1 and
b =4, a = —1 are shown in Figs 4 and 5, respectively, for
few values of fractional order.

Numerical simulations are performed using Ninteger
2.3 — Fractional Control Toolbox for MatLab, see Valério
(2005).

From Figs 4 and 5 it follows that simulations comfi
the above theoretical results that the system with 4a?
and a < 0 is stable for all positivex < 0.8391, whereas
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this system with a >0 is stable for all positive
a < 1.1609.

Now we consider the stability problem of positiwess
tem (1) with (33).

From Theorem 1 it follows that the system (1) wih
of the form (33) anda € (0,1] is positive if and only
if b<0.If b< 0 then from (34) it follows thaf has two
real eigenvalues, one negative and one positivencéle

from the above and Lemma 2 we have that the pesitiv

system (1) with the matrix (33) witth < 0 is unstable
for all fractional orders € (0,1]. In particular, this system
is unstable fox = 1 (the natural number positive system).

step response

Fig. 4. Step responses of the system wite —1,b = 4

step response

Fig. 5. Step responses of the system wite 1,b = 4

Example 2.Consider the fractional system (1) with

-1 08 11
A=|-08 -2 09 | (41)
-03 -12 -16

Check stability of the system far= 1.4 anda = 1.9.
Plot of the function
det((jw)® 1 - A)

(joo+1)3a , W (—00.0), (42)

Y(jw) =

20

with a = 1.4 anda = 1.9 is shown in Figs 6 and 7, respec-
tively.

According to (31) and (32) we have (independently

of the value ofx)

P(eo) = lim P(jo) =1, Y(0) =det(-A) =5.1240.

From Figs 6, 7 and Theorem 12 it follows that thetem
with a = 1.4 is stable (plot of (42) does not encircle the
origin of the complex plane) and with= 1.9 is unstable
(plot of (42) encircles the origin of the compldane).

imag

real

imag

Fig. 7.Plot of the function (42) withx = 1.9

Now we apply Theorem 5. Using the LMI toolbox

of Matlab, we obtain the following feasible solutiof (19):

fora =1.4
[ 07751 -0.0939 0.0750]

=|-0.0939 04212 -0.0232 (43)

| 00750 -0.0232 04510

fora=1.9

[ 14859 -0.6659 0.5467

=|-0.6659 0.2984 -0.2450|. (44)

| 05467 -0.2450 0.2012 |



Computing the leading principal minors of the ns
(43) and (44) we obtain, respectively,

A;=07751, A, =03277, A3 =0.1408

N =14850, A, =— 16760107, Az =-302510"°.

From the above it follows that the matrix (43) csjtive
definite (all the leading principal minors are pivg) and
the matrix (44) is not positive definite. This msaaccord-
ing to Theorem 5, that the system with= 1.4 is stable and
with o« = 1.9 is unstable.

Now we apply Lemma 3 to stability checking of tlyss
tem.

The matrix (41) has the following eigenvalues:

A =-09538 \,3=-18231 j14313

From (14) we havey = 2.4760 and from Lemma 3
it follows that the system is stable for ale (0, a,) where

o, = 2y/m = 1.4305. Hence, the system is stable for

a = 1.4 < a, and unstable fot = 1.9 > «.

Now we assumex = 0.5 and check stability using
Theorems 8 and 9.

Computing the feasible solutions of (23) and (24thw
a = 0.5 we obtain respectively

[ 0.3866 -0.0039 0.1038]

P=|-0.0039 02308 -0.0216| (45)
| 01038 -00216 03173 |
[ 06392 -0.0125 0.1085 ]

P=|-00125 04703 -0.0301|. (46)
| 01085 -0.0301 05521 |

It is easy to check that the matrices (45) and @)
positive definite. From Theorems 8 and 9 it follotee
system witha = 0.5 is stable.

Example 3.Check stability of the system (1) with

-14 0 01 18
01 -15 17 05

A= . (47)
01 008 -14 11
0 04 05 -14

The matrix (47) is a Metzler matrix. Therefore, gyes-
tem (1), (47) witha € (0,1] is a positive system. To stabil-
ity checking of this system we apply simple necessa
and sufficient condition given in Lemma 7.

Computing the characteristic polynomial of the nxatr
(47) we obtain

detl — A) =A% + 5723 + 11284\% + 80684\ + 0.8373

All coefficients of the above polynomial are positi
From Lemma 7 it follows that the positive fractibsgstem
(1) with matrix A of the form (47) is stable for any
a € (0,1].

The matrix (47) has the following eigenvalues:

A1 =-01239 \, =-15683 A,, = -2.003% |0.5404
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From (14) we have = 2.8782 anda, = 1.8323. From

Lemma 3 it follows that the system (1) wighof the form
(47) is stable for any fractional ordere (0, 1.8323).

5.

CONCLUDING REMARKS

Review of the existing methods for stability anédys

of the system (1) of fractional ordere€ (0,2) is given
and the new results are presented.

In particular, generalisation of the classical Mikbv

stability criterion to the class of fractional ordsystems (1)
with a € (0,2) is proposed.

10.

11.

Moreover, it has been shown that:

the fractional system (1) is unstable for alE (0,2)

if the matrixA has at least one non-negative real eigen-
value (Lemma 2);

if A has no real non-negative eigenvalues, then tle fra
tional system (1) is stable if and only df € (0, o)
where a, =2y/mt and y is computed from (14)
(Lemma 3);

the positive system (1) is stable for alE (0,1] if and
only if all coefficients of the characteristic patymial

of the matrixA are positive (Lemma 7).
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