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Abstract: In this paper we consider two ordinary fractional differential equations with composition of the left and the right 
Caputo derivatives. Analytical solution of this type of equations is known for particular cases, having a complex form, 
and therefore is difficult in practical calculations. Here, we present two numerical schemes being dependent on a fractional 
order of equation. The results of numerical calculations are compared with analytical solutions and then we illustrate conver-
gence of our schemes. Finally, we  show an application of the considered equation. 

 

1. INTRODUCTION  

This study is devoted to the analysis of ordinary diffe-
rential equations containing a composed form of left- and 
right-sided fractional derivatives, which are defined in any 
sense, i.e. the Riemann-Liouville and the Caputo ones. 
Moreover, we consider the equations in a restricted domain. 
The equations are obtained by modification the minimum 
action principle and the application of fractional integration 
by parts. It should be noted that many authors (Agrawal, 
2002; Klimek, 2002; Riewe, 1996) elaborated fractional 
forms of the Euler-Lagrange equations. However, the equa-
tions contain only specific compositions of fractional deriv-
atives, i.e. the arbitrary form of Riemann-Liouville (left- or 
right-sided) composed with the arbitrary form of Caputo 
(also left- or right-sided). Therefore, in the Euler-Lagrange 
equations a disadvantage  in boundary conditions occurs. 
The disadvantage reveals an introduction of homogenous 
conditions for one boundary, where the Riemann-Liouville 
fractional derivative exists (Blaszczyk et al., 2011; 
Leszczynski and Blaszczyk, 2010). To omit such problems, 
we consider a composed form of fractional derivatives, 
where the left- and the right-sided Caputo operators are 
used. Moreover, we expect that a fractional differential 
equation containing the composition of two Caputo deriva-
tives has physical meaning and will be useful in modelling 
complex processes in nature. 

To obtain the analytical solution is one of the funda-
mental problem that arises from Euler-Lagrange equations. 
The results, based on the fixed point theorem (Klimek, 
2007), are not capable in practice, because the solution 
is presented in the form of very complex series. Klimek 
(Klimek, 2008) proposed to use the Mellin transform 
in order to obtain the analytical solution. However, such 
solution has complex form, which includes series of special 
functions. For practical applications we cannot use the 

analytical solution due to its useless in calculations. There-
fore, we will construct some approximate solutions. Some 
numerical basics can be found in the studies (Blaszczyk, 
2009; Blaszczyk, 2010; Blaszczyk & Ciesielski, 2010). 

2. FORMULATION OF THE PROBLEM 

We consider two ordinary fractional differential equa-
tions with composition of the left- and the right-sided Capu-
to derivatives, which have the following forms 

( ) ( )0 0,C C
bD D T x T xα α λ− + − =  (1) 

( ) ( )0 0,C C
bD D T x T xα α λ+ − − =  (2) 

where � ∈ [0, �] and operators ���

�� , ���

��  are defined 
as (Kilbas et al., 2006) 
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where � = ��� + 1.  
Here, we mean ���

��  as the left-sided Caputo derivative 
and ���

��  denotes the right-sided Caputo derivative.  
For � ∈ (0, 1) Eqns. (1) and (2) are supplemented 

by the adequate boundary conditions 
 

( ) ( )00 , bT T T b T= =  (5) 
 

Analytical solutions are known only for some type 
of Euler-Lagrange equations (Klimek, 2007; Klimek, 
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2008), and they have very complex form. To omit this 
problem we propose a numerical approach. 

3. NUMERICAL SCHEMES 

In order to develop a discrete form of Eqns. (1) and (2), 
the homogenous grid of nodes is introduced as 

 

0 1 10 ,i i Nx x x x x b+= < < < < < < =… …  (6) 
 

where 
 

0 ,ix x i x= + ∆  (7) 
 

Function T determined at the point xi is denoted 
as Ti = T (xi). We also assume � ∈ (0, 1). 

3.1. Discrete scheme for Eqns. (1) and (2) 

We have introduced the discrete form of fractional de-
rivatives for Eqn. (1). The value of the left-sided Caputo 
derivative at point xi can be approximated as 
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where 
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Next, denoting �	�
 = ���

�� �(�) in Eqn. (1) we find 
the discrete form of the right-sided Caputo derivative 
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where 
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Using formulas (8) and (10) we obtain a system contain-
ing the discrete form of Eqn. (1) and boundary conditions 
as 
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Similarly to previous considerations, we write the dis-
crete form of Eqn. (2) as 
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To obtain full numerical solutions of Eqns. (1) and 
(2), we need to solve a system of algebraic equations (12) 
and (13) respectively. 

3.2. Convergence and error analysis 

Including discrete forms of Eqns. (1) and (2) we analyse 
errors and convergence of the numerical schemes.  Let us 
assume � ∈ (0, 1), � ∈ [0, 1], � = 0	and boundary condi-
tions as 

 

( ) ( )0 0, 1 1T T= =  (14) 
 

Then, the solution of Eqn. (1) has the following form 
 

( )T x xα=  (15) 
 

Tab.1 shows errors generated by numerical scheme (12) 
being dependent on fractional order � and step ∆x which 
was assumed in calculations.  

We determine experimental estimation of the conver-
gence row (EOC) as 
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where 
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In the error calculations we take into account boundary 
conditions (14). 

Tab. 1.  Errors and experimental estimation of the convergence  
 row (EOC) generated by the numerical scheme (12) 

 α = 0.3 α = 0.5 α = 0.7 

∆x error EOC error EOC error EOC 

1/16 1.51e-2  1.46e-2  1.05e-2  

1/32 8.47e-3 0.83 8.19e-3 0.83 6.05e-3 0.79 

1/64 4.60e-3 0.88 4.41e-3 0.89 3.34e-3 0.86 

1/128 2.44e-3 0.91 2.32e-3 0.93 1.80e-3 0.89 

 
Fig. 1. Numerical solutions of Eqn. (1) 

 
Fig. 2. Numerical solutions of Eqn. (2) 

When we solve Eqn. (2) numerically with boundary 
conditions 

( ) ( )0 1, 1 0T T= =  (18) 

then we obtain identical table of errors. This is resulted 
by the effect of relation between considered equations and 
the reflection operator (Blaszczyk and Ciesielski, 2010). 

Analyzing values of EOC in table 1 one can observe 
that the convergence of our numerical schemes is O(h) 
and does not depend of parameter �. 

Next, we calculated some examples for different values 
of α in order to show graphically how numerical solutions 
of Eqns. (1) and (2) behave. 

In Figure 1 and 2 the solutions of Eqns. (1) and (2) 
for different values of the parameter � are presented. One 
can see that both solutions are symmetrical. Analyzing the 
behavior of solutions we observe that T(x) tends to the 
solution of the classical second order ordinary differential 
equation for � → 1�. 

4. APPLICATION 

In order to show a practical application of Eqn. (1) 
we consider a steady state of heat transfer through the gra-
nular layer as presented by Fig. 3. 

Using the idea presented in (US Department of Trans-
portation, 2009) the experiment began with five thermo-
couples placed at depths 25 mm, 85 mm, 145 mm, 252 mm, 
327 mm in the granular material which is used for road 
construction. Grains have specific parameters such as ther-
mal conductivity, specific heat and density. It should be 
noted that the surface has been exposed to the weather 
conditions (irradiation, wind speed, relative humidity). Data 
from the thermocouples (US Department of Transportation, 
2009) helped us to create a temperature profile.  

 
Fig. 3. Experimental setup 

 
Fig. 4. Comparison of Eqn. (1) with experiment data  

  (US Department of Transportation, 2009) 
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In order to obtain the experimental results we approx-
imate a temperature profile using the solution of the frac-
tional Eqn. (1). Figure 4 presents comparison between ex-
perimental data and numerical results. 

Analyzing changes in the temperature profile we can 
say that the nonlinear profile is observed. Additionally, we 
can observe a good agreement between the experimental 
data and the solution of the fractional Eqn. (1). 

5. CONCLUSIONS 

In this work the fractional differential equations with 
composition of the left- and the right-sided Caputo deriva-
tives were considered. The analytical solutions of these 
equations are difficult to apply in practical calculations. 
Numerical solution is an alternative approach to the analyt-
ical one. In this study the numerical schemes were pre-
sented in order to obtain the solutions for considered equa-
tions. We show that the convergence row of our numerical 
schemes was O(h) and does not depend on parameter �.  

Our studies show that the model based on the fractional 
differential equation containing composition of the left- and 
the right-sided Caputo derivatives could reflect a steady 
state of the temperature profile in granular medium. 
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