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Abstract: In this paper we consider two ordinary fractionddedential equations with composition of the leftd the right
Caputo derivatives. Analytical solution of this typé equations is known for particular cases, havdngomplex form,
and therefore is difficult in practical calculat®rHere, we present two numerical schemes beingrdigmt on a fractional
order of equation. The results of numerical caliboifes are compared with analytical solutions arehttve illustrate conver-
gence of our schemes. Finally, we show an appicatf the considered equation.

1. INTRODUCTION

This study is devoted to the analysis of ordinaffed
rential equations containing a composed form df lefd
right-sided fractional derivatives, which are definin any
sense, i.e. the Riemann-Liouville and the Caputeson
Moreover, we consider the equations in a restridt@dain.
The equations are obtained by modification the mim
action principle and the application of fractioivgkgration
by parts. It should be noted that many authors dat,
2002; Klimek, 2002; Riewe, 1996) elaborated frawio
forms of the Euler-Lagrange equations. However eiipea-
tions contain only specific compositions of fractb deriv-
atives, i.e. the arbitrary form of Riemann-Liougillleft- or
right-sided) composed with the arbitrary form ofpGto
(also left- or right-sided). Therefore, in the Bulagrange
equations a disadvantage in boundary conditiortsirsc
The disadvantage reveals an introduction of homogen
conditions for one boundary, where the Riemann-iitel
fractional derivative exists (Blaszczyk et al., 201
Leszczynski and Blaszczyk, 2010). To omit such [aois,
we consider a composed form of fractional derivediv
where the left- and the right-sided Caputo opesatane
used. Moreover, we expect that a fractional difficied
equation containing the composition of two Caputoivh-
tives has physical meaning and will be useful irdaiting
complex processes in nature.

To obtain the analytical solution is one of the dan
mental problem that arises from Euler-Lagrange gojus
The results, based on the fixed point theorem (Ekm
2007), are not capable in practice, because thaticol
is presented in the form of very complex seriesmik
(Klimek, 2008) proposed to use the Mellin transform
in order to obtain the analytical solution. Howeveuch
solution has complex form, which includes seriespcial
functions. For practical applications we cannot tise

analytical solution due to its useless in calcolai There-
fore, we will construct some approximate solutioBeme
numerical basics can be found in the studies (Bladg
2009; Blaszczyk, 2010; Blaszczyk & Ciesielski, 2010

2. FORMULATION OF THE PROBLEM

We consider two ordinary fractional differentialueg
tions with composition of the left- and the rigited Capu-
to derivatives, which have the following forms

“Df_“DE.T(x)-AT(x) =0, 1)
“Dg, “DE.T (x)-AT(x) =0, )

where x € [0,b] and operators®Dg,, “DF_ are defined
as (Kilbas et al., 2006)

X g(n)
- 1 T (r)
)_r(”‘a)'([(x—r)"'“ﬂdr’ forx>0 (3

°DE.T (x

n

°DaT (x) = r((;ll_) dr, forx<b (4)

T 70 (7)
a)s (1=
wheren = [a] + 1.

Here, we mearf D¢, as the left-sided Caputo derivative
and “DZ_ denotes the right-sided Caputo derivative.

For ¢ € (0,1) Egns. (1) and (2) are supplemented
by the adequate boundary conditions

T(0)=To, T(b)=T, 5)
Analytical solutions are known only for some type

of Euler-Lagrange equations (Klimek, 2007; Klimek,
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2008), and they have very complex form. To omis thi
problem we propose a numerical approach.

3. NUMERICAL SCHEMES

In order to develop a discrete form of Eqns. (1 &2),
the homogenous grid of nodes is introduced as

0=X <X <...<X <X,1<...<Xy =b, (6)
where
X =X +i DX, (7)

Function T determined at the poink is denoted
asT; =T (x). We also assume € (0,1).

3.1. Discrete scheme for Eqns. (1) and (2)

We have introduced the discrete form of fractioted
rivatives for Egn. (1). The value of the left-sid€adputo
derivative at poink; can be approximated as

-
1 T'(1
0T, gy ) o
% (Xi _T)
1 L TJ+1 _TJ ¢ 1
O dr (8)
r(1—a)§ M (% -1)
= (87 > T v(i )
j=0
where
.. 1
v(i.i)= r(2-a)
(i-9)- -ite forj=0
(l _ ] +1)1—0/ _ 2(| _ j)l—a (9)
X
+(|_j_1)1—0' forj=1...i-1
1 forj =i

Next, denotingg(x) = D& T(x) in Egn. (1) we find
the discrete form of the right-sided Caputo deveat

°of “o8.T(x),_, =i 9(x)

x=x
(r

%

X
-1 N g- )
= dr
r(1-a) { (r-x)”
N-1 X

-1 Oj+179;
Dr(l—a)z AX

(10)

12

where
1
i) =g
1 forj =i
(j-i+1)" - 2(j-i)" (11)
+(j-i-1)" forj=i+1..,N-1

(N=i-2" =(N=i)" forj=N

Using formulas (8) and (10) we obtain a systemaiont
ing the discrete form of Egn. (1) and boundary daors
as

To =T (%)

(AX)—za ZN:{W(L j)zj:v(j,k)Tk]—/]Ti =0, fori=1.N-":

j=i k=0

(12)

Similarly to previous considerations, we write tHis-
crete form of Eqn. (2) as

To =T (%)

(AX)-Z”iZ[V(i- j)Zw(j,k)Tk]—/]Ti =0, fori=1,..N-:

i=0 k

]
Ty =T(xy)
(13)

To obtain full numerical solutions of Egns. (1) and
(2), we need to solve a system of algebraic equat{@2)
and (13) respectively.

3.2. Convergence and error analysis

Including discrete forms of Egns. (1) and (2) walgse
errors and convergence of the numerical schemes. us
assumea € (0,1), x € [0,1], 4 = 0 and boundary condi-
tions as

T(0)=0, T()=1 (14)

Then, the solution of Eqn. (1) has the followingnfio

T(x)=x" (15)
Tab.1 shows errors generated by numerical schefje (1
being dependent on fractional orderand step4x which
was assumed in calculations.
We determine experimental estimation of the conver-
gence row (EOC) as

error[N] J (16)

EOC = |Og2 [W{ZN]

where



1 1 N-1
§|T(XO) —T0| +f2|T(xN ) —TN|+Z:|T(><i ) —Ti|
error[N] = N i=1 ,

17)
In the error calculations we take into account lutzug
conditions (14).

Tab. 1. Errors and experimental estimation of the convecge
row (EOC) generated by the numerical scheme (12)

a=03 a=0.5 a=0.7
AX error | EOC| error | EOC| errorf EO(Q
1/16 1.51e-2 1.46e-2 1.05e-2
1/32 8.47e-8 0.83 | 8.19e-3 0.83 | 6.05e-30.79
1/64 4.60e-8 0.88 | 4.41e-3 0.89 | 3.34e-30.86
1/128 2.44e-B0.91 | 2.32e-3 0.93 (1.80e-30.89
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Fig. 1. Numerical solutions of Eqgn. (1)
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Fig. 2. Numerical solutions of Eqn. (2)

When we solve Eqn. (2) numerically with boundary
conditions

T(0)=1 T()=0
then we obtain identical table of errors. This ésulted

by the effect of relation between considered equatiand
the reflection operator (Blaszczyk and Ciesiel2Ri10).

(18)
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Analyzing values of EOC in table 1 one can observe
that the convergence of our numerical scheme®(ly
and does not depend of parameter

Next, we calculated some examples for differenti@sal
of ain order to show graphically how numerical soluson
of Egns. (1) and (2) behave.

In Figure 1 and 2 the solutions &hrs. (1) and (2)
for different values of the parameterare presented. One
can see that both solutions are symmetrical. Arradythe
behavior of solutions we observe thB{x) tends to the
solution of the classical second order ordinaryedéntial
equation fora - 1°.

4. APPLICATION

In order to show a practical application of Eqn) (1
we consider a steady state of heat transfer throglyra-
nular layer as presented by Fig. 3.

Using the idea presented in (US Department of Frans
portation, 2009) the experiment began with fiverte-
couples placed at depths 25 mm, 85 mm, 145 mmp#52
327 mm in the granular material which is used foad
construction. Grains have specific parameters sscther-
mal conductivity, specific heat and density. It sldobe
noted that the surface has been exposed to theheveat
conditions (irradiation, wind speed, relative huityid Data
from the thermocouples (US Department of Transpioria
2009) helped us to create a temperature profile.

Fig. 3. Experimental setup

364 *

304

T[°C)

solution of equation (1) fora =02 and A =0
* experimental data

T T
0 70 140 210 280 330

X [mm]
Fig. 4. Comparison of Egn. (1) with experiment data
(US Department of Transportation, 2009)
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In order to obtain the experimental results we appr
imate a temperature profile using the solutionhef frac-
tional Eqn. (1). Figure 4 presents comparison bebnex-
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