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Abstract: Frictionless contact of two isotropic half spacesdnsidered one of which has a small smooth eiragcess.
A method of solving the corresponding boundary &afwoblem of elasticity in axially symmetric casepresented via
the function of gap height. The governing integgglation for this function is solved analytically Bssuming a certain
shape of the initial recess. On the basis of theedl-form solution obtained the strength analyse @ontact couple is per-

formed and illustrated from the standpoint of femetmechanics.

1. INTRODUCTION

The knowledge of the solutions (especially anafytso-
lutions) to contact problems is a ground for theestigation
of strength, durability, fatigue of contacting ctesp
The overwhelming majority of works devoted to sgth
of contacting joints utilizes the solutions to plerhs
of penetration of rigid indenters into an elastafispace
(Hertzian contact). Extensive accounts can be found
in the book by Kolesnikov and Morozov (1989). Hoegv
much research has been concerned with contactegmsbl
when conjugates solids touch at point or alonglitre be-
fore loading (contact with non-conformable bounésyisee
a classification by Johnson, 1985). On the contrary
the contact interaction of bodies with conformaslefaces
has been investigated much less. Approaches emgloyi
this kind of interaction take into account the txige
of imperfections (recesses, pits, protrusions, awuities,
etc.) of surfaces related to their small deviatifros a flat
onto local parts. Such perturbations lead to ttell@b-
sence of contact, so the intercontact gaps ar¢ecrea

The problem under study — compression of two semi-
infinite isotropic elastic half spaces with an diyisymme-
tric smooth recess — belongs to the class of nassidal
contact problems involving contact interactions sofids
with conformable boundaries. The purpose of thesgare
work is to determine the stress distribution witthie mated
bodies and carry out a detailed analysis of strengt
of a contact couple from the point of view of fiaet me-
chanics.

2. FORMULATION OF THE PROBLEM
Consider two isotropic elastic semi-infinite solitkeing

in frictionless contact due to uniform pressyreapplied
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at infinity (see Fig. 1). The boundary of one (bddypos-
sesses a local deviation from the plane in the form
of a small smooth circular recess with radiusrhe shape

of this imperfection is assumed to be axially syrrineand
smooth. The boundary of the opposite body 2 isaaql

initial relief
of boundaries

T T T,

Fig. 1. Contact of two half-spaces with allowance
for an intersurface gap

intersurface gap

1

The problem is posed within the linear elasticity
for axially symmetric case. In the cylindrical codimate
system the shape of the surface recess, occupydirgudar
region of radiusb {(r, z=0) : 0<r < b}, is described
by a functionf(r). This initial recess results in the formation
of an intersurface gap of radius that is unknown and
depends on the pressupe (it is found in the process
of solution of the problem). Thus, the nominal @attinter-
facez = 0 is subdivided into two regions: the gap{ = 0) :

0 <r < a} and the region of body 1 — bod¥ contact, de-
fined by {(r,z=0) : 0<r <oo}.

A method of solving the above problem is basedhen t



use of the principle of superposition. Knowing &ial
solution corresponding to the basic stress andnstields
formed as a result of frictionless contact of lsgpidces with
flat surfaces, we concentrate attention on theupsed
problem associated with the excited state causedrby
initial geometrically perturbed surface (recessy ahe
created gap between the surfaces. For this problenget
the following boundary conditions:

at z=+oo : ng):o,agr)zo‘ 1)
at z=0:

o) =0, 0<r<o,

ag) :ngz)' 0<r<m, 1)
o =p, 0<r<a,

u(l) _ng) = f(r)’

7 a<r<oo,

Here superscriptd)(i = 1, 2 refer the quantity to body
1 or 2, respectively.

Note, that the radius of the gaps an unknown parame-
ter. It can be found from the condition of smootsgage
of gap’s faces

h'(a)=0, (2
where
h(r) = f(r) +u®(r,0)~ul (r, 0) (3)

is the height of the gap.

3. METHOD OF SOLUTION

The method of the solution to contact problems

for semi-infinite solids with allowance for geomnietsurface
disturbances has been developed in series of pdpers
Martynyak and co-workers (Martynyak, 1985; Shvetale
1996; Kit and Martynyak, 1999; Martynyak, 2000, Kit
et al.,, 2001). Some new results dealing with thell@on-
tact absence are given in works by Katsky and Monas-
tyrskyy (2002,2005), Monastyrskyy and Martynyak@3pn
The main idea of this method consists in the foihmw

(i) construction of the representation of the stresse

and displacements within the every of mated sdlidsugh
the function of the gaps’ height;

(ii) subsequent reduction of the problem to some iateg
equations for this function.

3.1. Representation of stresses and displacements

Following the approach in the axially symmetric ipro
lems, developed by Monastyrskyy (2002), the appabgr
representations of the displacements and strebsesgh
the Hankel transformH(¢) of the gap’s functionh(r)

(H(g):Tph(p)Jo(gp)dp) has been constructed. It was
0

shown that the functioH(¢) satisfies the dual integral equa-
tions
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o)

[2H(8) o (r)dg =--P+

0
+[E2F (&) 3p(ér)dé, 0<r<a, (4)
0
[&H(&)3o(¢r)dé =0, a<r<o,
0

Moreover, the expressions for components of digplac
ment vectoru and stress tensos through the function
H(¢) are given as

u)(r,2)m 2(1-v;)
M

= [£a-24 - €14)F €)-H ) Ty, ¢ e,
0

u)(r,2m 2(1-v;)
M

=" cf)f(Z(l— vi )+ &|2)F €)-H € g @r xig,

2. _ sz(F(ﬂ ~H@)e M3y (nae,

% =Z€2[(1+ E|)F @ -H©E) e Tap(en)ae,

# =Z<‘2[(1—5IZI)(F (©)-H @) ]e P (erde -
- ea-21 -l ©)-H @) 1 ae,

=24 | £FE-H @ 430 (Er)d +

+l e[ - ldF ©)-H@))e 1N ar,
(5)
In the above,F (&)= J'p f (p)Jo(ép)dp is the Han-
0

kel transform of the function of the initial recedsap€(r),

m = w/(1 —v) , wherey, v; stand for shear modulus
and Poisson’s ratio of the body denoted by= 1,2
andM = mmy/(m; + my,). Hence the contact problem
is reduced to solving the dual integral equati¢bs

3.2. Integral equation and its solution

The obtained dual integral equation (5) is welldstd
in literature. The technique of its solution is Mo
(Uflyand, 1977, Sneddon, 1966). Representing theglsio
functionH(¢) as

H(&)=¢&[y(p)sinépdp, (6)
0
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the equations (5) can be reduced to Abel’s integmalktion
for functiony(r)

a(r) (7)

v(r)==|—"/=— (®)

whereg(r) stands for RHS of equation (5)

To complete solving the problem in hand, it is rssegy
to determine the radius of the gapTo do this, we utilize
the condition (3) of smooth closure of the gap.tebmining
the height of the galp(r) via the functiony(r)

)= [Pl vp ©)

r P -2
we see that the condition (3) is equivalent togteation
y(a)=0. (10)

Once the function(r) and radius of the gagpare found,
the stress and displacement fields within everidstdn be
recovered by virtue of relations (6) with the aifl (@)
and (9).

4. EXAMPLE

As an example, assume that the shape of the indial
cess is given by formula

t(r)= r-b(l—rz/bz)?ﬁ (11)
For this case the Hankel transfoRf¥) of f(r) is
F(&)= rbbz(zb)‘5(—3(zb)zsin(ab)+
(12)
+95sin€b)- Eb costb ) .
The functiony(r) , calculated from (9) is
__2| 1 _3thy
y(r) = n{ P=7 b{ sz]r- (13)

The solution of equation (11), provided the funatir)
is given by (14), yields the following value of thadius
of the gapa:

a= le pSTHb
M 4 b

Now it follows that there is a certain level of extal
load, namelyp = 4bM/3rhg, for which the radius of the gap
becomes zero. It means that for this magnituddefres-
sure the gap is closed and the contact of thesdirea-
lized through the whole contact interface 0. The depen-

(14)
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dencea = a(p) is shown in Fig.2. The following dimension-
less parameters have been introducge:a/b, p=p/M,

hy =hy/b=10"3

Whereas the functiop(r) and the gap’s radiua are
known, the complete solution can be determined frela-
tions (6) and (7). Thus, the solution to the contaoblem
can be rewritten through the corresponding integrafter
calculations we obtain

al(r.2) _

ho (2
v zb3( 3bcInt (r,z,b)+9nt, ¢ ,zb)+

+3a2Int1(r,z,a)— ant, ( ,z,a)) ,

o9 (r.2) _

Y _p+%(—3bzlnt3(r,z,b)+ nt, ¢,z )+

+z(—3b2Int5(r,z,b)+ 9ntg .zb ))+
+3a2Int3(r,z,a)— ant, ¢.za)+
+z(3a2Int5(r ,Z,a) —9Intg (r ,z,a))) ,
ol (r.2) _
M
((1 2,)(-D?nt; ¢ 2b)+ dntg ¢ 2 )+

(=
(

+z(3a2Intg (r,z,a)-9ntyo( 22 ))) +

+2z Intg (r,z,b)+9ntyg¢ .z b ))+

+1-2v) 312Int7 t.za) 9ntg ¢ z a)

+%(—3b2|nt3(r ,z,b)+9nt, ¢ .zb)+

+z(—3b2Int5(r,z,b)+9lnt6(r,z,b))+
+3a2Int3(r,z,a)— dnt, ¢ .za)+
+z(3a2Int5(r,z,a)— 9ntg ,z,a))) ,
agg(r z)
M

%((1- Py )(—302Int7 ¢.zb)*+ 9ntg ¢ zb )+
+z( Intg(r,z,b)+9|nt10(r,z,b))+
+(1-2 )(C:azlnt7 t.za) 9ntg € z aj
+z(3a Intg (, 2,a)- ANty ¢ ,z,a)))+ (13)
w2, 20( ~32Inty (r,zb)+ Aty ¢ zb 1+

+3a2Int3(r ,z,a)—9nt, ,z,a)) ,

where Int,(r,z,b) (k=1,10) stand for integrals given
in Appendix.



The solution of the axially symmetric contact peshl
for semi-infinite solids with a surface recess gigy for-
mula (16) is found thus analytically.
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a
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Fig. 2. Dependence of radius of the gap on the applied load

4.1. Contact strength

The obtained closed-form solution can be usefubfa-
lyzing the assessment of strength of the contactoyple.
To estimate the strength of a system of two matestie
half spaces allowing for unevenness of their botirda
we shall use the classical criteria of fractures thiterion
of maximal principle stresses and the criterionmatximal
shear stresses (Bozydarnyk and Sulym, 1999).

It's worth noting that an analysis of the stresstriu-
tion within the every solid reveals that the stesss,, oy,
ogp are the principle stresses at the contact bour(dar).
Moreover, the principle stresses achieve theireaxér value
at z = 0. That's why we pay our attention to the analys
of stresses at the contact interface.

The maximum compressive stresses

Fig. 3. shows the distribution of contact normaésses
04 being the maximal compressive stresses. ThessBes
are zero within the gap region, then they increaaelsiev-
ing the maximal value atf =1 which corresponds
to the initial recess’ tip. Then they asymptotigapproach
to the magnitude of external presspre

Fig. 3.The distribution of stresses, at the contact interface
(0,=0,/M)

According to the criteria of maximal principle dses,
from an analysis of stresdistributions,, one can conclude
that the most dangerous zone is the vicinity of rdeess’
tip. Cracking of materials caused by the compressiv
stresses initiates most likely in the vicinity bkttip of the
surface geometrical imperfection.
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The maximum tensile stresses

Fig. 4 and 5 present the distribution of radialand cir-
cular gy stresses at the contact interface. They reveal
an interesting effect — the existence of tensilesses
at the contact interface. The stressgsand oy are: ()
tensile, {i) constant and iif) equal to each other within
atthe gap’s faces. The magnitude of tensile steess
andoy, at the gap’s faces is determined through the agplie
pressure and mechanical properties of the solids as
ol (r,00=08) (r,0)= @+ 2; )p/ 2, O<r<a. (16)

Thus, the cracking can be initiated by tensilessies.
The most dangerous region is the gap. Moreovempdssi-
bilities of cracks initiating along radial and aitar direc-
tions are equal.

-2 —

Fig. 4. The distribution of stresseg at the contact interface
(a-rr = Urr /M )

. \ \ L

0 0.5 1 15 r 2

Fig. 5. The distribution of stresses, at the contact interface
(Tgp =0ge/M )

The maximum shear stresses

The analysis of maximal shear stresses at the conta
interface has been carried out. Fig. 6 shows thillition
T..x- Based on the criteria of maximal shear stresseshwh
are used for assessment of plastic zones initiiedmost
dangerous zone is the vicinity of the recess’ tip.
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103-p=1.206

0.5 | =
0 1 r 2
Fig. 6.The distribution of maximal shear stresggs
at the contact interface

5. CONCLUSIONS

The found closed-form solution to the contact peafl
has served as a theoretical basis for an analyssength
of the contacting couple with a small surface rsces
The analysis has been carried out by utilizingsitas frac-
ture criteria, namely, the criteria of maximal miple
stresses and the criterion of maximal shear ssesse

The cracking of the material of the mated solids ba
caused by both compressive and tensile stressdsrner
case the most possible region where the crackdean-
itiated is the vicinity of the recess tip. The coegsive
stresses achieve their maximal value at the contemface
at the tip of the recess. On other hand, the ®ersikesses
oy anday, in the vicinity of the gap, appear at the integfac
Moreover, the maximal value is achieved at the géaces,
where o,, and g4y are constant and equal to each other.

The magnitude of the maximal tensile stress depends

on Poisson’s ratio of the material and lies in thege be-
tween 50% and 100% of the value of applied loaidfati-
ty. Two directions of cracking along the radial arictular
co-ordinate lines are equally possible.

According to the criterion of the maximal sheaesses
the most possible region where plastic zones canitigted
is the vicinity of the recess tip.
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APPENDIX

The values of the integrals appearing in (16) afelbws:

2zb

1. 4 (1. 2
bcog = tan"| ——— | |-z sin= tanl —
{2 (22—b2+r2D ’EZ (22—b2+r2D

Inty(r,z,b)= ng e singb Yq €r HE =
0
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b
JBIntl(r,z,B)dB, z%0;
0
Intz(r,z,b):.[e'zZ sm(Eb)—Ezbcosﬁb )Jl €r e = % z=0, r<bh;
0
2_,.2
byr® -b +rsm'1(9j, z=0,r>h.
2r r
sin”t 25 , ZZ0;
V(o+1)? 422 +(b=r)?+ 22
Int3(r,z,b)=Ie’EZMJOQr)dE= Ly z=0, r<b;
0 € 2
sin 1(?} z=0,r>b.
b
[Bints(r,z,B)B, z#0;
0
o ; _ n(2b? -r?
IntAr,z,b)zIe’Elen(Eb) E3bcos§b )Jo €r & = % z=0, r<bh;
0

l(b r2—b2+(2b2—r2)sin'{9D, z=0,r>b.
4 r

2bz .
> , ZZ0;
\/(\/(b+r)2+22+\/(b—r)2+22) —bz\/(b+r)2+22\/(b—r)2+z2
_ Tt o —
|nt5(r,z,b)_jeZsmgb)JOgr)ja_ 1 =0, r<b:
0 b2 _ 2
0, z=0, r>h.
b
[Bints(r,z,B)B, z#0;
w . 0
Intg (r, z,b) = J'e-zz sm(Eb)—Ezb cosgb )Jo €r Y =
° b2 -r2, z=0, r<hb;
0, z=0, r>bh.
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|nt7(r,z,b):°fe‘52@@da =
0

1

+=tan

, 2%0;

z=0, r>b.

—2[—zb+2—j§[z\/\/(zz—b2+r2)2+42302—(22—b2+r 2)+b\/\/(z b %y 32+428 2+(z 2p %y )2ﬂ+

r

1 x/§b+\/\/(22—b2+r2)2+422b2—(22—b2+r2)
x/§z+\/\/(22—b2+r2)2+422b2+(22—b2+r 2)

) o

b
[Bint;(r,2,B)B, z# 0;
0
o ) _ a2 —r2
Intg(r'z,b)zje.gzsm(zb) E4bcos§b ACED) g _ (42 - ) o ren
0 g r 32
%(b(2b2+r2)\/r2—b2+(4b2r2—r4)sin' {E
16r r
%[b—%\/\/(zz—b2+r2)2+422b2—(22—b2+r Z)J z# 0,
r
_ T &2 SINED) Iy (Er) o _ 1 _
Intg(r,z,b)—ie : d¢ = b+\/m’ z=0, r<b
b
—, =0, b.
2 z r>

sin€b)—&b cosEb )J;(&r) 4t =

b
[Bintg(r,z,B)B, z#0;
0

Intyo(r,z,b) = I et 5
0 3
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1 1 ( 2 .2 2 2)
20 —-r“+bvbc-r“|, z=0,
3p+ /bz_rz
b3
— z=0, r>b.
3r



