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Abstract: Frictionless contact of two isotropic half spaces is considered one of which has a small smooth circular recess. 
A method of solving the corresponding boundary value problem of elasticity in axially symmetric case is presented via 
the function of gap height. The governing integral equation for this function is solved analytically by assuming a certain 
shape of the initial recess. On the basis of the closed-form solution obtained the strength analysis of a contact couple is per-
formed and illustrated from the standpoint of fracture mechanics.  

 

1. INTRODUCTION 

The knowledge of the solutions (especially analytical so-
lutions) to contact problems is a ground for the investigation 
of strength, durability, fatigue of contacting couples. 
The overwhelming majority of works devoted to  strength 
of contacting joints utilizes the solutions to problems 
of penetration of rigid indenters into an elastic half-space 
(Hertzian contact). Extensive accounts can be found 
in the book by Kolesnikov and Morozov (1989). However, 
much research has been concerned with contact problems 
when conjugates solids touch at point or along the line be-
fore loading (contact with non-conformable boundaries, see 
a classification by Johnson, 1985). On the contrary, 
the contact interaction of bodies with conformable surfaces 
has been investigated much less. Approaches employing 
this kind of interaction take into account the existence 
of imperfections (recesses, pits, protrusions, concavities, 
etc.) of surfaces related to their small deviations from a flat 
onto local parts. Such perturbations lead to the local ab-
sence of contact, so the intercontact gaps are created.  

The problem under study – compression of two semi-
infinite isotropic elastic half spaces with an axially symme-
tric smooth recess – belongs to the class of non-classical 
contact problems involving contact interactions of solids 
with conformable boundaries. The purpose of the present 
work is to determine the stress distribution within the mated 
bodies and carry out a detailed analysis of strength 
of a contact couple from the point of view of fracture me-
chanics. 

2. FORMULATION OF THE PROBLEM  

Consider two isotropic elastic semi-infinite solids, being 
in frictionless contact due to uniform pressure p applied 

at infinity (see Fig. 1). The boundary of one (body 1) pos-
sesses a local deviation from the plane in the form 
of a small smooth circular recess with radius b. The shape 
of this imperfection is assumed to be axially symmetric and 
smooth. The boundary of the opposite body 2 is a plane. 
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Fig. 1. Contact of two half-spaces with allowance  
            for an intersurface gap 

The problem is posed within the linear elasticity 
for axially symmetric case. In the cylindrical co-ordinate 
system the shape of the surface recess, occupying a circular 
region of radius b {( r, z = 0) : 0 ≤ r ≤ b}, is described 
by a function f(r). This initial recess results in the formation 
of an intersurface gap of radius a  that is unknown and 
depends on the pressure p (it is found in the process  
of solution of the problem). Thus, the nominal contact inter-
face z = 0 is subdivided into two regions: the gap{(r, z = 0) : 
0 ≤ r ≤ a} and the region of body 1 – body 2 contact, de-
fined by {(r, z = 0) : 0 ≤ r ≤ ∞}.  

A method of solving the above problem is based on the 
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use of the principle of superposition. Knowing a trivial 
solution corresponding to the basic stress and strain fields 
formed as a result of frictionless contact of half spaces with 
flat surfaces, we concentrate attention on the perturbed 
problem associated with the excited state caused by an 
initial geometrically perturbed surface (recess) and the 
created gap between the surfaces. For this problem, we get 
the following boundary conditions: 
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Here superscripts (i), i = 1, 2 refer the quantity to body 
1 or 2, respectively.  

Note, that the radius of the gap a is an unknown parame-
ter. It can be found from the condition of smooth passage 
of gap’s faces 

( ) 0h a′ = , (2) 

where 

(2) (1)( ) ( ) ( ,0) ( ,0)z zh r f r u r u r= + −  (3) 

is the height of the gap. 

3. METHOD OF SOLUTION 

The method of the solution to contact problems 
for semi-infinite solids with allowance for geometric surface 
disturbances has been developed in series of papers by 
Martynyak and co-workers (Martynyak, 1985; Shvets et al., 
1996; Kit and Martynyak, 1999; Martynyak, 2000, Kit 
et al., 2001). Some new results dealing with the local con-
tact absence are given in works by Kaczyński and Monas-
tyrskyy (2002,2005), Monastyrskyy and Martynyak (2003).  

The main idea of this method consists in the following:  
(i) construction of the representation of the stresses 
and displacements within the every of mated solids through 
the function of the gaps’ height; 
(ii) subsequent reduction of the problem to some integral 
equations for this function. 

3.1. Representation of stresses and displacements 

Following the approach in the axially symmetric prob-
lems, developed by Monastyrskyy (2002), the appropriate 
representations of the displacements and stresses through  
the Hankel transform H(ξ) of the gap’s function h(r) 
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= ∫ξ ρ ρ ξρ ρ )  has been constructed. It was 

shown that the function H(ξ) satisfies the dual integral equa-
tions  
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Moreover, the expressions for components of displace-
ment vector u  and stress tensor σ  through the function 
H(ξ)  are given as 
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In the above, ( ) ( ) ( )0
0

F f J d
∞

= ∫ξ ρ ρ ξρ ρ  is the Han-

kel transform of the function of the initial recess shape f(r), 
mi = µi/(1 – vi) , where µi, vi  stand for shear modulus 
and Poisson’s ratio of the body denoted by i = 1,2  
and M = m1m2/(m1 + m2). Hence the contact problem 
is reduced to solving the dual integral equations  (5).  

3.2. Integral equation and its solution 

The obtained dual integral equation (5) is well studied 
in literature. The technique of its solution is known  
(Uflyand, 1977, Sneddon, 1966). Representing the sought 
function H(ξ) as 
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the equations (5) can be reduced to Abel’s integral equation 
for function γ(r)  

( ) ( )
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r d
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r r r

ρ γ ρ ρ∂ =
∂ − ρ
∫  (7) 

with the solution (Barber, 1983) 
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where g(r)  stands for RHS of equation (5)1. 
To complete solving the problem in hand, it is necessary 

to determine the radius of the gap a. To do this, we utilize                      
the condition (3) of smooth closure of the gap.  Determining 
the height of the gap h(r)  via the function γ(r)  
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we see that the condition (3) is equivalent to the equation  

 ( ) 0aγ = . (10) 

Once the function γ(r) and radius of the gap a are found, 
the stress and displacement fields within every solid can be 
recovered by virtue of relations (6) with the aid of (7) 
and (9).  

4. EXAMPLE 

As an example, assume that the shape of the initial re-
cess is given by formula  
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For this case the Hankel transform F(ξ) of f(r)  is 

( ) (
)

2 5 2
0 ( ) 3( ) sin( )

9sin( ) 9 cos( ) .

F h b b b b

b b b

−ξ = ξ − ξ ξ +

+ ξ − ξ ξ
 (12) 

The function γ(r) , calculated from (9) is 
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The solution of equation (11), provided the function γ(r) 
is given by (14), yields the following value of the radius 
of the gap a : 
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Now it follows that there is a certain level of external 
load, namely, p = 4bM/3πh0, for which the radius of the gap 
becomes zero. It means that for this magnitude of the pres-
sure the gap is closed and  the contact of the solids is rea-
lized through the whole contact interface z = 0. The depen-

dence a = a(p) is shown in Fig.2. The following dimension-
less parameters have been introduced: a a b= , p p M= , 

3
0 0 10h h b −= = . 

Whereas the function γ(r)  and the gap’s radius a are 
known, the complete solution can be determined from rela-
tions (6) and (7). Thus, the solution to the contact problem 
can be rewritten through the corresponding integrals. After 
calculations we obtain 
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where ( , , )kInt r z b  ( 1,10k = ) stand for integrals given 

in Appendix. 
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The solution of the axially symmetric contact problem 
for semi-infinite solids with a surface recess given by for-
mula (16) is  found  thus analytically. 

 
Fig. 2. Dependence of radius of the gap on the applied load 

4.1. Contact strength 

The obtained closed-form solution can be useful for ana-
lyzing the assessment of strength of the contacting couple. 
To estimate the strength of a system of two mated elastic 
half spaces allowing for unevenness of their boundaries, 
we shall use the classical criteria of fracture: the criterion 
of maximal principle stresses and the criterion of maximal 
shear stresses (Božydarnyk and Sulym, 1999).  

It’s worth noting that an analysis of the stress distribu-
tion within the every solid reveals that the stresses σzz, σrr, 

σθθ are the principle stresses at the contact boundary (z = 0). 
Moreover, the principle stresses achieve their extreme value 
at z = 0. That’s why we pay our attention to the analysis 
of stresses at the contact interface. 

The maximum compressive stresses 

Fig. 3. shows the distribution of contact normal stresses 
σzz, being the maximal compressive stresses. The stresses 
are zero within the gap region, then they increases, achiev-
ing the maximal value at 1r =  which corresponds  
to the initial recess’ tip. Then they asymptotically approach 
to the magnitude of external pressure p.  

 
      Fig. 3. The distribution of stresses σzz at the contact interface 

( zz zz Mσ σ= ) 

According to the criteria of maximal principle stresses, 
from an analysis of stress  distribution σzz one can conclude 
that the most dangerous zone is the vicinity of the recess’ 
tip. Cracking of materials caused by the compressive 
stresses initiates most likely in the vicinity of the tip of the 
surface geometrical imperfection. 

The maximum tensile stresses 

Fig. 4 and 5 present the distribution of radial σrr and cir-
cular σθθ stresses at the contact interface. They reveal 
an interesting effect – the existence of tensile stresses 
at the contact interface. The stresses σrr and σθθ are:  (i) 
tensile, (ii) constant and  (iii) equal to each other within 
at the gap’s faces. The magnitude of tensile stresses σrr 
and σθθ at the gap’s faces is determined through the applied 
pressure and mechanical properties of the solids as  

 ( )( ) ( ,0) ( ,0) (1 2 ) 2, 0ii
rr ir r p r aθθσ σ ν= = + < < . (16)  

Thus, the cracking can be initiated by tensile stresses. 
The most dangerous region is the gap. Moreover, the possi-
bilities of cracks initiating along radial and circular direc-
tions are equal. 

 
Fig. 4. The distribution of stresses σrr at the contact  interface 

( rr rr Mσ σ= ) 

 
Fig. 5. The distribution of stresses σθθ at the contact interface  

( Mθθ θθσ σ= ) 

 

The maximum shear stresses 

The analysis of maximal shear stresses at the contact 
interface has been carried out. Fig. 6 shows the distribution 

maxτ . Based on the criteria of maximal shear stresses, which 

are used for assessment of plastic zones initiated, the most 
dangerous zone is the vicinity of the recess’ tip.  
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        Fig. 6. The distribution of maximal shear stresses τmax  
                    at the contact interface 

 
5. CONCLUSIONS 

The found closed-form solution to the contact problem 
has served as a theoretical basis for an analysis of strength 
of the contacting couple with a small surface recess. 
The analysis has been carried out by utilizing classical frac-
ture criteria, namely, the criteria of maximal principle 
stresses and the criterion of maximal shear stresses. 

The cracking of the material of the mated solids can be 
caused by both compressive and tensile stresses. In former 
case the most possible region where the cracks can be in-
itiated is the vicinity of the recess tip. The compressive 
stresses achieve their maximal value at the contact interface 
at the tip of the recess. On other hand, the tensile stresses 
σrr and σθθ in the vicinity of the gap, appear at the interface. 
Moreover, the maximal value is achieved at the gap’s faces, 
where σrr and σθθ are constant and equal to each other. 
The magnitude of the maximal tensile stress depends 
on Poisson’s ratio of the material and lies in the range be-
tween 50% and 100% of the value of applied load at infini-
ty. Two directions of cracking along the radial and circular 
co-ordinate lines are equally possible. 

According to the criterion of the maximal shear stresses 
the most possible region where plastic zones can be initiated 
is the vicinity of the recess tip. 
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APPENDIX 

The values of the integrals appearing in (16) are as follows: 
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