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Abstract: The article is devoted to the elastostatic threeedisional problem of an interface sheet-like indlnganticrack)
embedded into a periodic two-layered unbounded ositgn An approximate analysis is carried out witthie framework
of the homogenized model with microlocal paramet@ise formulation and the method of solving the egah problem
for an arbitrarily shaped inclusion is presented.aft example illustrating this method, the probfena rigid circular inclu-
sion under perpendicular tension is solved explieind discussed from the point of view of faildheory.

1. INTRODUCTION

Problems dealing with stress concentrations inormief
able solids containing different kinds of defectsraat
the attention of specialists from many areas, sischeome-
chanics, metallurgy, materials science. In recestades
interest in the study of interface fracture phenoandas
grown considerably (see, for example, the procegdin
edited by Rossmanith (1997)). Rigid inclusions lézhl
anticracks) are the counterpart of cracks. Fromstaad-
point of inhomogeneities in solids, these defeotsthe two
dangerous extreme cases, namely, for a rigid imrius
u — o, and for a crack — 0, whereu is the shear modulus
of the inhomogeneity phase. Interfacial inclusiguigy
a significant role in the failure behavior. As wéthown,
serious stress concentrations occur near the shdgps
of the inclusions, from which cracking, debondidgmage
and so on may emanate. Therefore, the studidgsratea
with the aim of obtaining the theoretical solutioofsthe
problems involving rigid inclusions under differdofading
conditions are important for structural integrigsassments.
In comparison with crack problems, the investigatio
of anticracks problems is rather limited, and basgearch
has been performed on two-dimensional problemshimng
rigid line inclusions in elastic homogeneous me(iae
the monographs by Berezhnitskii et al. (1983) andgT
(1996)). The corresponding, more practical three-
dimensional problems dealing with rigid sheet-likesc
inclusions seem to remain inadequately treated femna
been performed to a much lesser extent. Much ot
works related in this field can be found in Kasaimd Sih
(1968), Selvadurai (1982), Silovanyuk (1984), PoHiik
(1997), Rahman (1999), and in the basic monogrdmghs
Mura (1981) and Panasyuk et al. (1986). The stunfi&D
problems of rigid inclusions at the interface a dfiemial
have been found only in Gladwell (1999), Selvadurai
(2000), Li and Fan (2001), Chaudhuri (2006). Thsults
show that the asymptotic stress elastic fields tlearigid
inclusion front exhibit the oscillatory singularitgimilar
to that for interface cracks. This physically antona be-
haviour does not occur in numerous problems afriate
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cracks or anticracks in a periodically layered spésee,
for example, Kaczyski and Matysiak 1997, 1999) treated
within the framework of linear thermoelasticity witmicro-
local parameters (Wmiak, 1987; Matysiak and Waiak,
1988).

This paper is devoted to a three-dimensional spabb-
lem of an arbitrary shaped rigid inclusion lying one
of the interfaces in a periodic two-layer laminatgohce
subjected to some external loads. An approximaddysis
is based on the concept of microlocal homogeninattiat
leads to a replacement of the considered periatigposite
by some homogenized model with microlocal paramseter
In Section 2 we review governing equations and tdate
the anticrack problem within this model. Sectiopr8sents
a general method of solving the resulting boundaaiye
problem. As an illustration, a closed-form solutisrgiven
and discussed in Section 4 for a circular rigidluson
subjected to tension at infinity.

2. GOVERNING EQUATIONS AND FORMULATION

The composite being considered is a periodic latatha
space consisting of thin repeated fundamental $ayer
of thicknessd which is composed of two bonded homoge-
neous isotropic layers denoted by 1 and 2 as shown
in Fig. 1. In the following, all quantities (mataficonstants,
stresses, etc.) pertinent to these sublayers wiltiénoted
with the index or (I) taking the values 1 and 2, respective-
ly. Let A;, 4 be the Lamé constants, adf be the thick-
nesses of subsequent sublayers, thag), + 0.

Referring to the rectangular Cartesian coordingstesn
OXX,X3 with the X3 — axis directed normal to the layering
and the XX, — plane being one of the interfaces of the
materials, denote at the typical point X %, (X, X3)
the components of the displacement vector andsstessor
byw andaj, i,j 0{1,2,3 , respectively.

Suppose that a rigid sheet-like inclusion (antikyac
serving as a mechanical defect in this periodickiered
composite occupies a domas with smooth boundary at the
interfface x; = 0 and is subjected to some external loads.



To analyze the elastic field disturbed by this defa direct
analytical approach becomes intricate becauseeot¢m-
plicated geometry and complex boundary conditidiere-
fore, the special homogenization procedure calledaio-
cal modelling will be employed in order to seek am+
proximate solution within the homogenized modeltlod
considered composite. Next, we recall only someveeit
results from this approach (see Matysiak andziisk
(1988), Kaczyiski (1993) for more details).
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Fig. 1. Two-layer periodic space with an interface antikrac

In the subsequent considerations the followintatian
will be used: Latin subscripts always assume valyez 3
and the Greek ones 1,2. The Einstein summationesdgion
holds and a comma followed by an index denotepé#ngal
differentiation with respect to the correspondingrmiinate
variable.
The microlocal modelling is based on the followitig-
placement representations:

w (x) =y (x)+ 5 %) d(x).

@)

Here the unknown functions; and d; are interpreted
as macro-displacements and microlocal parametespgec-
tively. Moreover, the postulateal priori functions, called
the shape function, characterises the special appate
model of the treated composite. It is chosen tedxetion-
ally linear,d — periodic, defined as

s(@)={

%3 —0,50;, x30(00y)

n=0,10.
(& —nx3)!(1-17)= 0,501 ,x30(d1 O) 7=

)

The underlined term in Eqg. (1) represents the micro
displacements due to the microperiodic materialcstire
of the composite. Note, that for thin layegsig small) this
term may be treated as small and can be negldetedhe
derivative s’ is a sectionally constant functioak{hg the
value 1 if | =1 and #/(1 —n) if | =2) thatis not small
even for smalld. Hence, the following approximations
for the displacements and stresses (according tokél®
law) hold:
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WU, We=Wg . W3= Hat Sid,

Oap = 1 (uaﬁ+uﬂ’a) + Jaﬁ/h (qj + écg),
Ua3’~“#|(”a,3+U3a+ g%),

o33 = (A +24 )(U3,3+ S'd3)+/\ Yy,

whered,; is the Kronecker delta.

By using methods of the nonstandard analysis to the
homogenization procedure, the asymptotic approadhe
macro-modelling of the laminated space under stadgs
to the governing relations of certain macro-homegers
medium (the homogenized model), given by means af m
cro-displacements (after eliminating the micrologatame-
ters) and taking the following form (in the absewn¢dody
forces and in the static case):

%(011"'012) U ya +%(Oll_ C12) G yyt

+Cq Uy 33+(C13t Caq U3 g =0, (4)
(C13+Caa) Uy 3+ CagUsy, + CagUz 35 O
Oq3 = C44(ua, 3t u3,a) '
033 = C13U, ), + C33U3 3
) _
0'1(2) = 4 (U1,2 + U2,1), (5)

o0 gy v dl)

)
11 = dig Ut dip b ot 0(13 U 3

0’92) = dgz) Ut dgl.:?. U ot 001% U 3

Positive coefficients appearing in the above equati
describing the material and geometrical charadiesis
of the subsequent layers, are given in Appendix A.

The advantage of the governing equations is theda-r
tively simple form resembling fundamental equatidos
a transversely isotropic body. Moreover, the cadodit
of perfect mechanical bonding between the layédrs ¢on-
tinuity of the stress vector at the interfaces)saisfied,
so hereafter we shall omit the indd) i the components
oi3. Note, however, that the stress componeﬁ'ﬂ@; are
discontinuous at the interfaces. Finally, putthg= 4, = A,

f ==y entailscyy = ez =dV = A+ 24, ¢ =cy =
d;=d"53=1,cu=p, and Egs (4) and (5) reduce to the
well-known equations of elasticity for a homogeredso-
tropic body with Lamé’s constanis .

Within the scope of the presented homogenized model
we are concerned with the problem of a rigid indos
occupying a regiors at the interfaces = 0 and subjected
to external loadings. In order to satisfy the glabachani-
cal boundary condition ensuring that the facesnofuision
are free from displacements, superposition is adpli
to separate this problem into two parts: the fose (at-
tached by 0) relating to a basic state of the hyenized
space with no inclusion subjected to the given$oand the
second, corrective part (with tilde) in which thisplace-
ments alonds are prescribed as the negative of those gener-
ated in the first part. In addition, the displacetm&nd rota-
tion of the inclusion as a rigid body ought to bken into
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consideration. Thus, the complete field of the ldispments
u; and stressesy; in the composite with the inclusion can
be represented in the form

(6)

u=4 +9, g =4; +q

and in the following we assume thétand 3”- are known
from the solution to the first problem. In fact,lpthe val-
ues of U; (%, %,0),0( %, %)0 < are needed in the sub-

sequent analysis. Next, special attention is paithé sec-
ond non-trivial perturbed problem involving the dbdis-
turbance due to the presence of the anticr&®k
The mathematical formulation of this boundary vatueb-

lem is as follows: find fields); and &j; , decaying at infin-

ity, suitable smooth of® — S, such that Egs (4) and (5)
hold subject to the boundary conditions 8n

Oy ==t +&1- w3,

Gy =l +£+ w3

)

l]3 = _ﬁ3 + &3~ C()2X1+ WXy,

whereg; and w; are the unknown components of a small
displacement vector and a small angle of rotatescdbing

a motion of the inclusion as a rigid whole under #ttion

of external loads. These parameters will be detexthlater

in the course of solving the problem in hand frdm équi-
librium conditions of the anticrack (no resultardrdes
and zero-moments).

To reduce the above problem to mixed boundary value

problems of potential theory associated with a-bpHce
region (say, atz > 0) and further, to integral equations
(Kaczyaski, 1999), we invoke the relevant symmetry prop-
erties about the plang = 0 and can split the problem into
two subproblems:

(A) — the antisymmetric problem with the mixed citioths
Uy = -ty +&3-woxg+ wixa O( %4 X)O S

0 =0 =0 0(%,%)0 R, (8)
G33=0, O(x,%)0R-S

and supplemented by the corresponding equilibdondi-
tions to determines, w,

J][ﬁ%(xl. Xz,O) 033(x1,x2, )} dx,dx,= 0
S

[[s-a [0‘33(&, x2,0+)—5—33( X3 ng)] dxgdxs= 0 ©)
S

(B) — the symmetric problem with the mixed condigo

Oy =~ +&1-w3xo O(x, %) 0 S

Uy =—Ur +ex+waxy, O( X x)O S (10)
5 =0, 0(x,%)0 R,

G31=023,=0, O(xpx) DR - S

44

and additional equilibrium conditions to determing ws
”[530 (xl, x2,0+) -0q ( X1, X, 0 )} dx dx= 0
S

J.SJ'{XZ [&31(x1, x2,0+)—&3]( X XZ,O_):|

- X1|:5-32(X1, Xo, 0+)—6'32( Xy, xzo_)}} dxdx= 0

(11)

3. SOLVING THE ANTICRACK PROBLEM

For the solution of the problems (A) and (B) we tise
potential function approach based on representiagcom-
ponents of displacement§; in terms of quasi-harmonic

functions that satisfy the governing equations g4)l are
well suited to the mixed boundary conditions (8Y@n
According to the results obtained by Katgki (1993)
the potential displacement representation is degr@ndn
the material constants of the sublayers. Hereaftdy, the
general casel; # U, will be considered in which the dis-
placements and stresses are expressed in termwsresf t
harmonic potentialgi(xy, Xo, ), Z =tiXs, ¥ie{1.2.3} as

W=(A+®) - gs2 U= (prred ,+ @3
3 (12)
3—2”}{% %
E: i(l+n’b)taa¢a - t3 02%
Caa | o . 070% ’
%2 § (1em,), O | 4 00
|5 0% |, ~039x’
2 2
Q: 1 4 %
Caq azzzl( +m")a 2’
oly :M[2(¢1+¢z)‘12 @117 93 22],
o) =dl)(a+e) ,+di(a+e) ,,
2 62
+d('3)2nbt§ aga ~2U 5,12 (13)
a=1 Zq
W =dlla+e) +dl(a+e)

+d132”b§ z% +200 @3 12

a=1 a

where the constants, m, are defined in Appendix B.

We now proceed to construct the potentials sepgrate
in subproblems (A) and (B) with the aim of theidueing
to some mixed problems of potential theory.

Subproblem (A)

An appropriate displacement representation in terms
of a single harmonic functioifx, x,, Xs) that frees the plane



X3 = 0 of the displacementi, is obtained by taking in the
general solution (12)

W (%%, %) = (1) (%%, %), @:=0. (14)

Then the displacement and stress components are

Uy =ﬁ§2:jl(—1)ﬁ o (Xg';‘;’ Zﬁ),
o el 3 o)y %) |
[z()( o) f(;zgz,zﬁ)] |
s
o= 5 | ) T el g e 8]

)3 (o, Tl

2

-3 )ﬂ[d;g"’ (o), gy ta %)]

(15)

Across the interfaceg = 0% equations (15) become

5 =(mpto- my)| o % X2 3] xy=0* ’

O3 = Cag(t +mpty— myt)| fa (X %2 X3 xy=0*

033 = Caq( My m])[ fad %1 Xz Xﬂ xy=0* ' (16)
012 =0,

ot = 0%, = (mzlzz‘ mﬁ)[ f af xg xp X} _—
(substitutedl(é) forxg =0", dl(g) for xg = O_).

The application of conditions (8) leads to the ttany
conditions
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- for (% %)OS

_83 ( Xs X9, 0+) +E3— WXt WXy

[f’3(x1, X2 X3)] x=0" Mty - mb |

— for (% %)OR-S

|:f’33()(1, X2, X3)] X3=O+ =0
17)
The mixed boundary value problem posed by the above
equations is regarded as the classical one appeariypi-
cal electrostatic and punch problems (Sneddon, Y1968
reduced to an integral equation by assuming theviaig

representation for the unknown potenfiaind its derivative
f'3:

f(X)=—F—— Uq X =&+ %) dS
S{ (18)

M)U |X -

27704

fa(x)=-

2]TC44

Here, the unknown layer densif{¢;, & ) can be identi-
0(é1.65)0Sand|x ¢

is a distance between the field point (x;, o, X3) and the
integration pointé = (&1, &, 0). Due to the well-known
properties of the potential of a simple layer (gilay (18)),

the last condition in (17) is satisfied, and thstfone leads

to the following integral equation for the stregs 633| gt

033 51,52 dé,ds,

fied as the stress”r33({1, &, 0+) ,

H -U _03 ( Xl’ X2) , (19)
\/ (3= &)° +(x2-&2)°
where the following notations are used:
__ Mpbh-mb
271cqq(mp— m) (20)

l]?,(>(1'X2):‘E‘3(X1 %, 0 )+53 WXt W 1X).

It is noteworthy that this governing equation hasrai-
lar form as that arising in the classical contambpem
(Fabrikant, 1989). Generally, it can be solved bynarical
methods. However, in the case wheris an ellipse andi;

is an arbitrary polynomial, a closed-form exacusioh can
be obtained (Rahman, 2002).

Subproblem (B)

The mathematical formulation satisfying the cormdis
(10) is more complex that than used in subproblém (
and requires the introduction of two harmonic fiocs
G(Xq, X2, X3), H(X1, X2, X3) such that their relationships ¢
in Egs. (12) are
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_ mt
X1y X9, ) = ——————— Xy X0, 4,
A (x4, X2, 21) e (% X2 2)
_ M
’ ’ - - . F ) d ’ 21
® (%, %21 22) e —— S % % 2) (21)
B (3, %2 23) = Fo( % % s
where
0G(x, %, 0 H( %, %,
Fy (0. %0, 21) = ();LX:2 Z1)+ (a)ixz)ﬁz 5)
0G(X, %, %) 0 H % %,
) (30, %01 25) = (’;Xf 2) 9 H A 2 @
0G(x, %, ) 0 H( %, %,
Fa (X, X0, 23) = ();szz ) _ (;Xl)@ Z‘s)

Inserting Eqgs (21) into (12) yields the displacetaen

(MR- metoF] | oF,

Ul: y
Mt — My 0 %
tFp— Mty F
L]2:[”1112 mzzj],2+ai, (23)
Ml —mYy 0%
G o o (an aFlj
3—— - T .
mb-mt0z 037

By the same procedures, the corresponding stress co

ponents are found from Eqs (13) as

. 2 2
ﬂ: tlt2 (1+n’}l) 0 F2 _(1+ rnz) 0 Fl
Csq Mply— Ml 0 x0 2 0 7 (24)
. %R
3 0X20 Z3 '

2 2
Sz 7 _ {(1+ml) " Lo (14 my)C Fl]

Cag  Mply— My 0 X0 2 0 X0 7
0°F,
3oxoz’
~_3:; tl(l+ﬁh)azj—t2(l+ mz)azFl
Cag  Mply— MYy 072 07
~£|2) _ 2[mty Ry~ mztzF]],lz
—== — +F3,117 F3, 20
H Ml - mYy
| |
A msR- mR] o) iR mA]
H Myty— Mg
dVet, [ a2F, a7
t -t -2 F ,
Mty =My 262% lazl2 17312
| |
d'(l) _ d](.Z)[nltiFZ_ I’Tbtzlz]],ll+ ({J?[ n].E.FZ_ rnZtZF]l’ZZ
22 Myt~ my
dVet, [ a2F, a7
t -t + 214 F .
Mty =My 262% lazl2 3,12
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The above expressions simplify considerable on the

planexs =0 (then 0i, z =0,F (%, %, 2) = F( %, %, %)
0F (%4.%.7) _0F(% % %)

0z 0%
F3 =G ,—H ;). Moreover, by letting

s and Fl: F2 =G’1+ H’2,

_0G(%, % %)
obe)” g (25)
OH (X, X, X
h(xl,xz,)%):%’

Egs (23) and (24) yield the displacement and stress

components across the plane of symmeiry O

ty [9,3] %y=0"

0y =] hs] om0’

5 =0,

ot

Cil =[g33*+K g 2=k h, 1) yy=0" (26)
i

‘é?;z :[h’33+/(h’11—/( g 12] -

t
O33=—Cyy| 1+———— +h ,
33 44( Moty — m_Ltzj[g’?’l ,32} X5=0
(
U£2) =4[ 932+ %=0"

Expressions forﬁFl) and ﬁgz) have been omitted be-

cause of their complexity. The constanG* and « stand
for

tto (Mo —
c*:c44—12( M) b (27)
Mt~ My c

We see that the boundary value problem posed by Egs

(10) is equivalent to that of finding two harmofimctions
g andh in X3 > 0 such that their partial derivatives up to the
third order vanish at infinity and satisfies thdldaing
mixed conditions omgz = O:

- for (% %)O0S
[9,3()(1' %2, X3)]X3:0+ =-Wremwgx O(x x40 S

[h,?,(xl, X0, x3)] - =-Utetwaxy O( x4 x)0 S

— for (% %)OR-S (28)

[9,33+K 9,207k h,12] %m0 - 0,

[h,33+Kh,11_K9,12] %,=0" =0.



It can be observed that this formulation is duathe
well-known obtained for the shear loading crackbem
(see Kassir and Sih, 1975). To solve the probleenmake
use of the integral method developed by Kasky (1999).
The harmonic functiong and h are expressed as Fourier’s

integrals (Sneddon, 1972)

M [

1d8¢—, (29)
R2
where & =(&,&,,0)0S,|&|=+/& + &5 and the unknown

functions Ayand A, in view of (28), must satisfy the fol-
lowing system

K& KED
T {Ag(a}:
Ké1$o _K_flz Ah(‘f)

T 0
g7 it S RIS

Its solution is
NG
47 C* (1 K)Lh({)__
_KE  _K&EE (31)
|{|2 |"r|2 J"{ng(”)}exp[ |(’7 £ )}dS’
_xéd w3 |)) o) o
i

Now, making use of these expressions it followsnfro
Egs (29) that (see Silovanyuk, 1984 and Kasky 1999
for more details)

- [[ol@dss ([ oul)(e-¢2° dg
Cg3(x) JSJ |x - JJ Ix- {|3

where

C=-2m(1-k)C* = -2tz . (33)
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Finally, from the first conditions of (28), one abts the
following integral equations for the stressig,

JJ F31(&)dSs _KJJ 731(¢)( Xz‘fZ)Z dg
[ =4 e —¢f°

+Kﬂ332( )(X1|X*51_)§;<2 £9dg _

ﬂ 3(£) dS¢ _KJ’J G35()( %~ d$
) | =4 s -&°

S
+KJJ 31 (&) (x - 1) (x2- ¢ dF _
e -’
where the following notations were introduced:
¥ =(x,%)08 £=(&,62)0 8
0y (%, %) = - E‘1( % %0 )*51 W3Xa,

S

= =21tz 0y (X, Xo) ,

(34)

27t G (4, %)

(39)

U (%, %) = = E'(Xl %, 0 )+52+a)3x1

Note that the form of (34) is similar to that giviem the
corresponding homogeneous isotropic problem. Magov
it is verified that the derived governing integegjuations
are in agreement with those achieved by Silovar{y9i84)
in the homogeneous case. Knowing the

T34 (X4, Xo) acting on the sid&'of the rigid inclusion from

the solution of Egs (34), the stress and displaceriields
can be found from the main potentiglandh, determined
by means of (32).

4. EXAMPLE: ANTICRACK UNDER TENSION

For illustration, presented is a solution to theljem
of a rigid circularly-shaped interface inclusiorugk that

:[( X, )gz,O): r= >§+ )é < f}) in a periodictwo-layer

laminated space subjected to a constant normadsspre
at infinity (see Fig. 1), i.e.

O33() = p, 031(0) =0g5() =0.

The results for the O-displacements of the includiee
problem involving the solution of the basic equasiq4)
and (5) with conditions (36) are readily obtainedée

4 =-Apx, B=-Apx,

where

(36)

(37)

a7

stresses
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A Cia where
Caa(Cia+ Cin)—2 (',2 ,
33( 11 12) 13 (38) B= _4 AC* p. (45)
_ G1+Co T

caz(C11+ €19 —2¢3 .

Now invoking the displacements in Egs (37) on the
planex; = 0, we deduce by consideration of symmetry in (8)
thates = w1 = w, = 0. Thus, we proceed to solving the sub-

Accordingly, the problem is axially symmetric artet
full elastic field is determined if we find the mgbotentials
gand h (see (21) - (25)). Substituting (44) into (32) get

problem B (cf (10) and (11)) in which the approfeiaon-
ditions are

Ul(xl, x2,0+)= Apx+e—waX, O(x %0 S
GZ(Xl' X2,0+)= Apxt+ertwsx O( % 90 S
03()(1, X2,0+)= 0, D(Xl,XZ)D ﬁ s (39)

631(x1, x2,0+)=532(x1,x2,0+)= 00( x,x)0 R- S

g =0 L as |X| - .
]

This problem is reduced to the set of coupled two-

dimensional integral equations (34) in which thghtisides

are determined by the following polynomials:
0y (%, %) = &1+ Apx—w3X, (40)
Uz (3, %) = £2+ WX+ AP X,

An exact solution of these integral equationsawtetd
by using Galin’s theorem, has the form

bOa"'kthl"'bzaxz,DaD{l’% ’

22— 2

O3y (Xl’ Xz) =

(41)

where by, 10{0,1,3 o 0{ 1,2 are the unknown constants

to be determined. Putting (41) into (34) and caltiny
the resulting integrals (see Vorovich et al.,19%49, arrive
at the equalities of two polynomials. Hence, a eyst
of algebraic equations fop, can be obtained, and their

solving yields
A
m(2-k)

4tg
=by=—2 Wy,
bro =byq - 3

oy = &, Da0{13,

(42)

4
=by,= -2 AC*
b1 =Dy, p p

If we now make use of the equilibrium conditiond )1
on the anticrack we find (as might be expected) tha

§=&=w3=0 (43)

and the solution given by (41) can be written ia fimple
form

O (40, %) = B——2—

3 (X_I_l X210+)[| Sl
a2—r2

(44)

48

93 :g (¢+KX2¢,2‘K X1<//,2) -
(46)

h,3:g (¢/+KX1<//,2‘K X2¢,]) -

Here ¢ andy are the potentials of simple layers defined as

rr

p(x) = 444 %, ,
s \/(X1‘51)2+(X2‘52)2+X23\/az‘ff‘f%
- 47)
w(x)= fdadls ,
\/(X1‘51)2+(X2‘52)2+ x%\/az—ff—{%

(8
()RS

for which the method of Fabrikant (1989) yields éxglicit
results in elementary functions as follows

2_.2
#(x)=mx arcsin® -2 I22 i
|2 |2
(48)
2_.2
W(x)= 1% arcsin® -2 I22 a
I 15
where in his notation
Iy =l4(a,r x3) =%[\/(r +a)2 +x5 —\/(r —a)2+x%} ,
(49)

I, =15 (a,r.x3) :%{\/(r +a)% +x3 +\/(r —a)2+x§} :

All the necessary partial derivatives or some irdkg
of potentials (48) can be found in Appendix 5 o thook
by Fabrikant (1991), which allows us to write a qbete
solution to problem under study.

It is of interest to record and discuss the relevan
terfacial stresses in the plane of the anticradkeyTare
given below:

45 pr

F—F—, 0<r<a,
O3 (r’01)= ma? -r? (50)
O, r>a1
=53 P, O<r<a,
Oas(r, 0% | = 51
33( ) _2,83p[—a —arcsiné], r>a ,( )
T r2_g r

where (see Appendices)



B = ACk = C11C33C44 1 ’ (52)
[%3(‘311+ C19) =2 ‘?13]( Cif+ C4)
5 = 2013 C44(\/ C11C33~ 013 (53)

(\/ C11Ca3+ C44)[ Caq Coqt C13-2 81} |

Now, it is significant to observe that the singitiar
of the stresses close to the edge of the antichaskthe
orderr™? contrary to oscillatory type observed in the elas
tic fields relating to bimaterial interfaces. Frdahe stand-
point of classical fracture mechanics, two failunecha-
nisms are possible:

— separation of the material from the inclusion chta
ized by the stress singularity coefficients

S = im JZa Do (1) =+ A0

r-a

(54)

— mode | (edge-opening) deformation characterizethby
stress intensity factor

lim \277(r —a) g33(r,0) =% :

r-a*

K = (55)

These parameters may be used to the determination

of the limiting equilibrium of the considered congie
weakened by the anticrack (see, e.g. Rahman, 2002).
Finally, the solution to the corresponding homogerse
material problem is the special case when
M=A=A, py=p,=pu, and hencecyy =Cz3=A+2u,

Cp =C3=4, ¢4y = . Then Egs (52) and (53) become

o A(A+2u) v (1-v)
'Br_(/]+3,u)(3/1+2y)_(1+v (3-4)° (56)
By = 2 _ 2v(1- )
- (A+3u) (31 + 2u) - (1+v)(3- #)
with v :L being Poisson'’s ratio, and the results are
2(A+u)

in agreement with those obtained differently by aand
Sih (1968).

APPENDIX A
Denoting by
h=A+24 (1=12), b=(¥n)h+nb,

the positive coefficients in governing equation} #4d (5)
are given by the following formulas:

acta mechanica et automatica, vol.4 no.4 (2010)

g3 = byby/

a1 = Cgat [47(1-n)(pa- k) (A=A gt - 3] /o,
Gz =[(1=7)Aby+1 Aqby) /b,

ci ={ MAa+ 2o+ (1-n) g [ A 1+(1-7) A o]} b,
Cag = tapto! [(1=n) a1 115]

afy =[4u (A +4)+A ] 1p,

d) =21 4 +A ag] b,

ol = A csal b

APPENDIX B

The constants appearing in Egs (12) and (13) aengi
as follows:

t=3(t-t), tr=3(t +t),
tg =/(C11C10)/ 2C4s,

-2 _
- Cﬂ.lta C44 , I:Ial:l{l,% ,
C3+Cyq

where
(A £204) A

C33Cyq

A: =G 1 C33% Cr3.

Note that t;t,=./c{1/C33, Mymy=1.
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