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Abstract: The article is devoted to the elastostatic three-dimensional problem of an interface sheet-like inclusion (anticrack) 
embedded into a periodic two-layered unbounded composite. An approximate analysis is carried out within the framework 
of the homogenized model with microlocal parameters. The formulation and the method of solving the general problem 
for an arbitrarily shaped inclusion is presented. As an example illustrating this method, the problem for a rigid circular inclu-
sion under perpendicular  tension is solved explicitly and discussed from the point of view of failure theory.  

 

1. INTRODUCTION 

Problems dealing with stress concentrations in  deform-
able solids containing different kinds of defects attract 
the attention of specialists from many areas, such as geome-
chanics, metallurgy, materials science. In recent decades 
interest in the study of interface fracture phenomena has 
grown considerably (see, for example, the proceedings 
edited by Rossmanith (1997)). Rigid inclusions (called 
anticracks) are the counterpart of cracks. From the stand-
point of inhomogeneities in solids, these defects are the two 
dangerous extreme cases, namely, for a rigid inclusion  
µ → ∞, and for a crack µ → 0, where µ is the shear modulus 
of the inhomogeneity phase. Interfacial inclusions play 
a significant role in the failure behavior. As well known, 
serious stress concentrations occur near the sharp edges 
of the inclusions, from which cracking, debonding, damage 
and so on may emanate. Therefore,  the studies in this area 
with the aim of obtaining the theoretical solutions of the 
problems involving rigid inclusions under different loading 
conditions are important for structural integrity assessments. 
In comparison with crack problems, the investigation 
of anticracks problems is rather limited, and basic research 
has been performed on two-dimensional problems involving 
rigid line inclusions in elastic homogeneous media (see 
the monographs by Berezhnitskii et al. (1983) and Ting 
(1996)). The corresponding, more practical three-
dimensional problems dealing with rigid sheet-like disc 
inclusions seem to remain inadequately treated and have 
been performed to a much lesser extent. Much of the past 
works related in this field can be found in Kassir and Sih 
(1968), Selvadurai (1982), Silovanyuk (1984), Podil’chuk 
(1997), Rahman (1999), and in the basic monographs by 
Mura (1981) and Panasyuk et al. (1986). The studies of 3D 
problems of rigid inclusions at the interface a bimaterial 
have been found only in Gladwell (1999), Selvadurai 
(2000), Li and Fan (2001), Chaudhuri (2006). The results 
show that the asymptotic stress elastic fields near the rigid 
inclusion front exhibit the oscillatory singularity similar 
to that for interface cracks. This physically anomalous be-
haviour does not occur in numerous  problems of interface 

cracks or anticracks in a periodically layered space (see, 
for example, Kaczyński and Matysiak  1997, 1999) treated 
within the framework of linear thermoelasticity with micro-
local parameters (Woźniak, 1987; Matysiak and Woźniak, 
1988).  

This paper is devoted to a three-dimensional static prob-
lem of an arbitrary shaped rigid inclusion lying on one 
of the interfaces in a periodic two-layer laminated space 
subjected to some external loads. An approximate analysis 
is based on the concept of microlocal homogenization that 
leads to a replacement of the considered periodic composite 
by some homogenized model with microlocal parameters. 
In Section 2 we review governing equations and formulate 
the anticrack problem within this model. Section 3 presents 
a general method of solving the resulting boundary value 
problem. As an illustration, a closed-form solution is given 
and discussed in Section 4 for a circular rigid inclusion  
subjected to tension at infinity.  

2. GOVERNING EQUATIONS AND FORMULATION 

The composite being considered is a periodic laminated 
space consisting of thin repeated fundamental layers 
of thickness δ  which is composed of two bonded homoge-
neous isotropic layers denoted by 1 and 2 as shown  
in Fig. 1. In the following, all quantities (material constants, 
stresses, etc.) pertinent to these sublayers will be denoted 
with the index l or (l) taking the values 1 and 2, respective-
ly. Let λ1, µ1 be the Lamé constants, and δ1 be the thick-
nesses of subsequent sublayers, thus δ = δ1 + δ2.  

Referring to the rectangular Cartesian coordinate system 
OX1X2X3 with the X3 – axis directed normal to the layering 
and the X1X2 – plane being one of the interfaces of the 
materials, denote at the typical point x = (x1, x2, x3)  
the components of the displacement vector and stress tensor  
by wi and σi j, { }, 1,2,3i j ∈ , respectively.  

Suppose that a rigid sheet-like inclusion (anticrack) 
serving as a mechanical defect in this periodically layered 
composite occupies a domain S  with smooth boundary at the 
interface x3 = 0 and is subjected to some external loads. 
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To analyze the elastic field disturbed by this defect, a direct 
analytical approach becomes intricate because of the com-
plicated geometry and complex boundary conditions. There-
fore, the special homogenization procedure called microlo-
cal modelling will be employed in order to seek an ap-
proximate solution within the homogenized model of the 
considered composite. Next, we recall only some relevant 
results from this approach (see Matysiak and Woźniak 
(1988), Kaczyński (1993) for more details).  

 
Fig. 1. Two-layer periodic space with an interface anticrack 

  In the subsequent considerations the following notation 
will be used: Latin subscripts always assume values 1, 2, 3 
and the Greek ones 1,2. The Einstein summation convention 
holds and a comma followed by an index denotes the partial 
differentiation with respect to the corresponding coordinate 
variable. 

The microlocal modelling is based on the following dis-
placement representations: 

( ) ( ) ( ) ( )3 .i i iw u s x d= +x x x  (1) 

Here the unknown functions ui and di are interpreted 
as macro-displacements and microlocal parameters, respec-
tively. Moreover, the postulated a priori function s, called 
the shape function, characterises the special approximate 
model of the treated composite. It is chosen to be section-
ally linear, δ  – periodic, defined as 

( ) ( ) ( )
3 1 3 1

3 1
1 3 1 3 1

0,5 , 0,
; / .

/ 1 0,5 , ,

x x
s x

x x

δ δ
η δ δ

δ η η δ δ δ
 − ∈= =

− − − ∈
 (2) 

The underlined term in Eq. (1) represents the micro-
displacements due to the microperiodic material structure 
of the composite. Note, that for thin layers (δ is small) this 
term may be treated as small and can be neglected, but the 
derivative s’ is a sectionally constant function (taking the 
value 1 if  l = 1  and  –η/(1 – η)  if  l = 2) that is not small 
even for small δ. Hence, the following approximations 
for the displacements and stresses (according to Hooke’s 
law) hold: 

( ) ( )
( )

( )( )

, , ,3 ,3
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3 ,3 3,
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 (3) 

where δαβ  is the Kronecker delta.  
By using methods of the nonstandard analysis to the 

homogenization procedure, the asymptotic approach to the 
macro-modelling of the laminated space under study leads 
to the governing relations of certain macro-homogeneous 
medium (the homogenized model), given by means of ma-
cro-displacements (after eliminating the microlocal parame-
ters) and taking the following form (in the absence of body 
forces and in the static case): 

( ) ( )
( )

( )

1 1
11 12 , 11 12 ,2 2

44 ,33 13 44 3,3

13 44 , 3 44 3, 33 3,33
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0
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 (4) 

( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

3 44 , 3 3,

33 13 , 33 3,3

1,2 2,112

1,1 2,2 3,311 11 12 13

1,1 2,2 3,322 12 11 13

,

,

,

,

.

l
l

l l l l

l l l l

c u u

c u c u

u u

d u d u d u

d u d u d u

α α α

γ γ

σ

σ

σ µ

σ

σ

 = +

 = +



= +

 = + +

 = + +

 (5) 

Positive coefficients appearing in the above equations, 
describing the material and geometrical characteristics 
of the subsequent layers, are given in Appendix A.  

The advantage of the governing equations is their rela-
tively simple form resembling fundamental equations for 
a transversely isotropic body. Moreover, the condition 
of perfect mechanical bonding between the layers (the con-
tinuity of the stress vector at the interfaces) is satisfied, 
so hereafter we shall omit the index (l) in the components 
σi3. Note, however, that the stress components σ

(l)
αβ are 

discontinuous at the interfaces. Finally, putting λ1 = λ2 ≡ λ, 
µ1 = µ2 ≡ µ  entails c11 = c33 = d(l)

11 = λ + 2µ,  c11 = c33 = 
d(l)

11 = d(l)
13 = λ , c44 = µ,  and  Eqs (4) and (5) reduce to the 

well-known equations of elasticity for a homogeneous iso-
tropic body with Lamé’s constants λ, µ.  

Within the scope of the presented homogenized model 
we are concerned with the problem of a rigid inclusion 
occupying a region S at the interface x3 = 0 and subjected 
to external loadings. In order to satisfy the global mechani-
cal boundary condition ensuring that the faces of inclusion 
are free from displacements, superposition is applied 
to separate this problem into two parts: the first one (at-
tached by  0) relating to a basic state of the homogenized 
space with no  inclusion subjected to the given loads and the 
second, corrective part (with tilde) in which the displace-
ments along S are prescribed as the negative of those gener-
ated in the first part. In addition, the displacement and rota-
tion of the inclusion as a rigid body ought to be taken into 
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consideration. Thus, the complete field of the displacements 
ui and stresses  σij  in the composite with the inclusion can 
be represented in the form 

00 ,i i i i j i j i ju u u σ σ σ= + = +ɶ ɶ  (6) 

and in the following we assume that 0
iu and 0

i jσ are known 

from the solution to the first problem. In fact, only the val-

ues of  ( ) ( )0
1 2 1 2, ,0 , ,iu x x x x S∀ ∈  are needed in the sub-

sequent analysis. Next, special attention is paid to the sec-
ond non-trivial perturbed problem involving the local dis-
turbance due to the presence of the anticrack S. 
The mathematical formulation of this boundary value prob-

lem is as follows: find fields iuɶ  and i jσɶ , decaying at infin-

ity,  suitable smooth on R3 – S, such that Eqs (4) and (5) 
hold subject to the boundary conditions on  S 

0

0

0

1 1 1 3 2

2 2 2 3 1

3 3 3 2 1 1 2

,

,

u u x

u u x

u u x x

ε ω

ε ω

ε ω ω

= − + −

= − + +

= − + − +

ɶ

ɶ

ɶ

 (7) 

where εi  and  ωi  are the unknown components of a small 
displacement vector and a small angle of rotation describing  
a motion of the inclusion as a rigid whole under the action 
of external loads. These parameters will be determined later 
in the course of solving the problem in hand from the equi-
librium conditions of the anticrack (no resultant forces 
and zero-moments).  

To reduce the above problem to mixed boundary value 
problems of potential theory associated with a half-space 
region (say, at x3 ≥ 0) and further, to integral equations 
(Kaczyński, 1999), we invoke the relevant symmetry prop-
erties about the plane x3 = 0 and can split the problem into 
two subproblems: 

(A) – the antisymmetric problem with the mixed conditions 

( )
( )
( )

0
3 3 3 2 1 1 2 1 2

2
1 2 1 2

2
33 1 2

, , ,

0, , ,

0, ,

u u x x x x S

u u x x R

x x R S

ε ω ω

σ

= − + − + ∀ ∈

= = ∀ ∈

= ∀ ∈ −

ɶ

ɶ ɶ

ɶ

 (8) 

and  supplemented by the corresponding equilibrium condi-
tions to determine ε3, ωα 

( ) ( )
( ) ( )

33 1 2 33 1 2 1 2

3 33 1 2 33 1 2 1 2

, ,0 , ,0 0,

, ,0 , ,0 0

S

S

x x x x dx dx
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σ σ

σ σ

+ −
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−

 − =  

 − =  

∫∫

∫∫

ɶ ɶ

ɶ ɶ

 (9) 

(B) – the symmetric problem with the mixed conditions 

( )
( )
( )
( )

0

0

1 1 1 3 2 1 2

2 2 2 3 1 1 2

2
3 1 2

2
31 32 1 2

, , ,

, , ,

0, , ,

0, ,

u u x x x S

u u x x x S

u x x R
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σ σ

= − + − ∀ ∈

= − + + ∀ ∈

= ∀ ∈

= = ∀ ∈ −

ɶ

ɶ

ɶ

ɶ ɶ

 (10) 

and additional equilibrium conditions to determine εα, ω3 

( ) ( )
( ) ( ){
( ) ( ) }

3 1 2 3 1 2 1 2

2 31 1 2 31 1 2

1 32 1 2 32 1 2 1 2
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S

S

x x x x dx dx

x x x x x

x x x x x dx dx

α ασ σ

σ σ
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+ −

 − =  
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∫∫

∫∫

ɶ ɶ

ɶ ɶ

ɶ ɶ

(11) 

3. SOLVING THE ANTICRACK PROBLEM  

For the solution of the problems (A) and (B) we use the 
potential function approach based on representing the com-
ponents of displacements iuɶ  in terms of quasi-harmonic 

functions that satisfy the governing equations (4) and are 
well suited to the mixed boundary conditions (8) an (9).  

According to the results obtained by Kaczyński (1993) 
the potential displacement representation is dependent on 
the material constants of the sublayers. Hereafter, only the 
general case u1 ≠ u2 will be considered in which the dis-
placements and stresses are expressed in terms of three 
harmonic potentials ϕi(x1, x2, zi), zi = tix3,                   as  

( ) ( )1 1 2 3,2 2 1 2 3,1,1 ,2

2

3
1

,

,

u u

u m t
z
α

α α
αα

φ φ φ φ φ φ

φ

=
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∂= ∂∑
 (12) 
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∂
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where the constants ,it mα are defined in Appendix B.  

We now proceed to construct the potentials separately 
in subproblems (A) and (B) with the aim of their reducing 
to some mixed problems of potential theory. 

Subproblem (A) 

An appropriate displacement representation in terms  
of a single harmonic function f(x1, x2, x3) that frees the plane 
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x3 = 0 of the displacement uαɶ  is obtained by taking in the 

general solution (12)  

( ) ( ) ( )1 2 1 2 3, , 1 , , , 0.x x z f x x zα
α α αφ φ= − ≡  (14) 

Then the displacement and stress components are 

( ) ( )
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z

f x x z
c m t
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Across the interface 3 0x ±=  equations (15) become 
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The application of conditions (8) leads to the boundary 
conditions 
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The mixed boundary value problem posed by the above 
equations is regarded as the classical one appearing in typi-
cal electrostatic and punch problems (Sneddon, 1966). It is 
reduced to an integral equation by assuming the following 
representation for the unknown potential f and its derivative 
f,3: 

( ) ( ) ( ) ( )

( ) ( )
( )

3
44 2 1

,3
44 2 1

1
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x x
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ξξξξ

ξξξξ

ξ ξξ ξξ ξξ ξ

ξξξξ
ξξξξ

(18) 

Here, the unknown layer density q(ξ1, ξ2 ) can be identi-

fied as the stress ( ) ( )33 1 2 1 2, ,0 , , Sσ ξ ξ ξ ξ+ ∀ ∈ɶ and −x ξξξξ  

is a distance between the field point x = (x1, x2, x3)  and the 
integration point ξ = (ξ1, ξ2, 0). Due to the well-known 
properties of the potential of a simple layer (given by (18)2), 
the last condition in (17) is satisfied, and the first one leads 
to the following integral equation for the stress 33 Sq σ +≡ ɶ : 

( )
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( )33 1 2 1 2
3 1 2

2 2
1 1 2 2

,
ˆ , ,

S

d d
H u x x

x x

σ ξ ξ ξ ξ

ξ ξ
= −

− + −
∫∫

ɶ
 (19) 

where the following  notations are used: 

 ( )
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2 2 1 1
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,
2

ˆ , , ,0 .

m t m t
H

c m m
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π

ε ω ω+

−
=

−
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 (20) 

It is noteworthy that this governing equation has a simi-
lar form as that arising in the classical contact problem 
(Fabrikant, 1989). Generally, it can be solved by numerical 
methods. However, in the case where S is an ellipse and 3û  

is an arbitrary polynomial, a closed-form exact solution can 
be obtained (Rahman, 2002). 

Subproblem (B) 

The mathematical formulation satisfying the conditions 
(10) is more complex that than used in subproblem (A) 
and requires the introduction of two harmonic functions 
G(x1, x2, x3), H(x1, x2, x3) such that their relationships to ϕi  
in Eqs. (12) are 
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where 
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Inserting Eqs (21) into (12) yields the displacements 

[ ]

[ ]

1 1 2 2 2 1 , 1 3
1

2 2 1 1 2

1 1 2 2 2 1 , 2 3
2

2 2 1 1 1

1 2 2 1
3

2 2 1 1 2 1

,

,

.

m t F m t F F
u

m t m t x

m t F m t F F
u

m t m t x

t t F F
u

m t m t z z

− ∂
= −

− ∂
− ∂

= +
− ∂

 ∂ ∂
= − − ∂ ∂ 

ɶ

ɶ

ɶ

 (23) 

By the same procedures, the corresponding stress com-
ponents are found from Eqs  (13) as 

( ) ( )
2 2

31 1 2 2 1
1 2

44 2 2 1 1 1 2 1 1

2
3

3
2 3

1 1

,

t t F F
m m

c m t m t x z x z

F
t

x z

σ  ∂ ∂
= + − + 

− ∂ ∂ ∂ ∂  

∂
−

∂ ∂

ɶ

    (24) 

 

( ) ( )

( ) ( )

( ) [ ]

( )
( ) [ ]

2 2
32 1 2 2 1

1 2
44 2 2 1 1 2 2 2 1

2
3

3
1 3

2 2
33 2 1

1 1 2 22 2
44 2 2 1 1 2 1

1 1 2 2 2 1 ,1212
3, 11 3, 22

2 2 1 1

1 1 2 2 2 111 ,1
11

1 1

,

1
1 1 ,

2
,

l

l

l
l

t t F F
m m

c m t m t x z x z

F
t

x z

F F
t m t m

c m t m t z z

m t F m t F
F F

m t m t

d m t F m t F

σ

σ

σ
µ

σ

 ∂ ∂
= + − + 

− ∂ ∂ ∂ ∂  

∂
+

∂ ∂

 ∂ ∂
= + − + 

− ∂ ∂  

−
= + −

−

−
=

ɶ

ɶ

ɶ

ɶ

( ) [ ]

( )

( )
( ) [ ] ( ) [ ]

( )

1 1 2 2 2 1121 ,22

2 2 1 1

2 2
1 213 2 1

2 1 3, 122 2
2 2 1 1 2 1

1 1 2 2 2 1 1 1 2 2 2 112 11,11 ,22
22

2 2 1 1

2 2
1 213 2 1

2 1 3, 122 2
2 2 1 1 2 1

2 ,

2

l

l

l

l l
l

l

l

d m t F m t F

m t m t

d t t F F
t t F

m t m t z z

d m t F m t F d m t F m t F

m t m t

d t t F F
t t F

m t m t z z

µ

σ

µ

+ −

−

 ∂ ∂
+ − − 

− ∂ ∂  

− + −
=

−

 ∂ ∂
+ − + 

− ∂ ∂  

ɶ

.

  

The above expressions simplify considerable on the 
plane 3 0x = (then , 0ii z∀ = , ( ) ( )1 2 1 2 3, , , ,i i iF x x z F x x x=   

( ) ( )1 2 1 2 3

3

, , , ,i i i

i

F x x z F x x x

z x

∂ ∂
=

∂ ∂
, and 1 2 ,1 ,2F F G H= = + , 

3 ,2 ,1F G H= − ). Moreover, by letting 

( ) ( )

( ) ( )

1 2 3
1 2 3

3

1 2 3
1 2 3

3

, ,
, , ,

, ,
, , ,

G x x x
g x x x

x

H x x x
h x x x

x

∂
=

∂
∂

=
∂

 (25) 

Eqs (23) and (24) yield the displacement and stress 
components across the plane of symmetry x3 = 0  

 

( )

3

3

3

3

3

3

1 ,3 0

2 ,3 0

3

31
,33 ,22 , 12 0

32
,33 ,11 , 12 0

33 44 ,31 ,32 02 2 1 2

,32 ,3112 0

,

,

0,

,
*

,
*

1 ,

.

x

x

x

x

x

l
l x

u g

u h

u

g g h
C

h h g
C

t
c g h

m t m t

g h

σ κ κ

σ κ κ

σ

σ µ

±

±

=

=

±

=

±

=

−
=

=

 =  

 =  

=

 = + − 

 = + − 

 
 = − + +   − 

 = + 

ɶ

ɶ

ɶ

ɶ

ɶ

ɶ

ɶ

 (26) 

Expressions  for ( )
11

lσɶ and ( )
22
lσɶ  have been omitted be-

cause of their complexity. The constants  *C  and κ stand 
for 

 
( )1 2 2 1 3

44
2 2 1 1

* , 1 .
*

t t m m t
C c

m t m t C
κ

−
= = −

−
 (27) 

We see that the boundary value problem posed by Eqs 
(10) is equivalent to that of finding two harmonic functions 
g and h in x3 ≥ 0 such that their partial derivatives up to the 
third order vanish at infinity and satisfies the following 
mixed conditions on x3 = 0: 

( )
( ) ( )

( ) ( )

( )

0

3

0

3

3

3

1 2

,3 1 2 3 1 1 3 2 1 20

,3 1 2 3 2 2 3 1 1 20

2
1 2

,33 ,22 , 12 0

,33 ,11 , 12 0

–     for  ,

, , , , ,

, , , , ,

–     for  ,

0,

0.

x

x

x

x

x x S

g x x x u x x x S

h x x x u x x x S

x x R S

g g h

h h g

ε ω

ε ω

κ κ

κ κ

+

+

+

+

=

=

=

=

∈

  = − + − ∀ ∈ 

  = − + + ∀ ∈ 

∈ −

 + − = 

 + − = 

(28) 
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It can be observed that this formulation is dual to the 
well-known obtained for the shear loading crack problem 
(see Kassir and Sih, 1975). To solve the problem, we make 
use of the integral method developed by Kaczyński (1999). 
The harmonic functions g  and h are expressed as Fourier’s 

integrals (Sneddon, 1972) 

( )
( )

( ) ( )
( )

2

3
2

exp
,

g

h
R

Ag x i x
dS

h A

α αξ     − + =   
      

⌠⌠

⌡⌡

x

x
ξξξξ

ξξξξξξξξ
ξξξξξξξξ

 (29) 

where ( ) 2 2
1 2 1 2, ,0 ,Sξ ξ ξ ξ= ∈ = +ξ ξξ ξξ ξξ ξ  and the unknown 

functions gA and hA , in view of (28), must satisfy the fol-

lowing system 

( )
( )

( )
( ) ( )

2
2 1 2
2 2

2
1 2 1
2 2

31 1 2
2

32 1 2

1

1

,1
exp .

,4 *

g

h

S

A

A

i dS
C

α α

κ ξ κ ξ ξ

κ ξ ξ κ ξ

σ η η
η ξ

σ η ηπ

 
− 

  
=  

    − 
  

 
 = −   

  

⌠⌠

⌡⌡

ηηηη

ξξξξξ ξξ ξξ ξξ ξ

ξξξξ

ξ ξξ ξξ ξξ ξ  (30) 

Its solution is 

( )
( )
( )

( )
( ) ( )

2

2
1 1 2
2 2

31

2
321 2 2

2 2

4 * 1

1

exp .

1

g

h

S

A
C

A

i dSα α

π κ

κ ξ κ ξ ξ

σ
η ξ

σκ ξ ξ κ ξ

 
− = 

  

 
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   
 −     

    − − 
  

⌠⌠

⌡⌡

ηηηη

ξξξξ

ξξξξ

ξ ξξ ξξ ξξ ξ ηηηη
ηηηη

ξ ξξ ξξ ξξ ξ

(31) 

Now, making use of these expressions it follows from  
Eqs (29) that (see Silovanyuk, 1984 and Kaczyński, 1999 
for more details) 

( ) ( ) ( ) ( )

( ) ( )( )

( ) ( ) ( )( )

( )( )( )

2
31 31 2 2

,3 3

32 1 1 2 2
3

2
32 32 1 1

,3 3

31 1 1 2 2
3

,

S S

S

S S

S

dS x dS
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x x dS

dS x dS
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σ σ ξ
κ

σ ξ ξ
κ

σ σ ξ
κ

σ ξ ξ
κ

−
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− −

− −
+

−

−
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+

−

⌠⌠⌠⌠
 ⌡⌡ ⌡⌡

⌠⌠

⌡⌡

⌠⌠⌠⌠
 ⌡⌡ ⌡⌡

⌠⌠

⌡⌡

ɶ ɶ

ɶ

ɶ ɶ

ɶ

ξ ξξ ξξ ξξ ξ

ξξξξ

ξ ξξ ξξ ξξ ξ

ξξξξ

ξ ξξ ξξ ξξ ξ
ξξξξ ξξξξ

ξξξξ

ξξξξ

ξ ξξ ξξ ξξ ξ
ξξξξ ξξξξ

ξξξξ

ξξξξ

x
x x

x

x
x x

x

(32) 

where  

( ) 32 1 * 2 .C C tπ κ π= − − = −  (33) 

Finally, from the first conditions of (28), one obtains the 
following integral equations for the stresses 3 Sασ +ɶ : 

( ) ( )( )

( ) ( )( ) ( )

( ) ( )( )

( )( )( ) ( )

2
31 31 2 2

3

32 1 1 2 2
3 1 1 23

2
32 32 1 1

3
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3 2 1 23

ˆ2 , ,

ˆ2 , ,

S S

S

S S

S

dS x dS

x x dS
t u x x

dS x dS

x x dS
t u x x

σ σ ξ
κ
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σ σ ξ
κ

σ ξ ξ
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−
−

− −

− −
+ = −

−

−
−

− −

− −
+ = −

−

⌠⌠⌠⌠
 ⌡⌡ ⌡⌡

⌠⌠

⌡⌡

⌠⌠⌠⌠
 ⌡⌡ ⌡⌡

⌠⌠

⌡⌡

ɶ ɶ

ɶ

ɶ ɶ

ɶ

ξ ξξ ξξ ξξ ξ

ξξξξ

ξ ξξ ξξ ξξ ξ

ξξξξ

ξ ξξ ξξ ξξ ξ
ξξξξ ξξξξ

ξξξξ

ξξξξ

ξ ξξ ξξ ξξ ξ
ξξξξ ξξξξ

ξξξξ

ξξξξ

x* x*

x*

x* x*

x*

(34) 

where the following notations were introduced: 

( ) ( )
( ) ( )
( ) ( )

0

0

1 2 1 2

1 1 2 1 1 2 1 3 2

2 1 2 2 1 2 2 3 1

* , , , ,

ˆ , , ,0 ,

ˆ , , ,0 .

x x S S

u x x u x x x

u x x u x x x

ξ ξ

ε ω

ε ω

+

+

= ∈ = ∈

= − + −

= − + +

x ξξξξ

 (35) 

Note that the form of (34) is similar to that given for the 
corresponding homogeneous isotropic problem. Moreover, 
it is verified that the derived governing integral equations 
are in agreement with those achieved by Silovanyuk (1984) 
in the homogeneous case. Knowing the stresses 

( )3 1 2,x xασɶ acting on the side S+of the rigid inclusion from 

the solution of Eqs (34), the stress and displacement fields 
can be found from the main potentials g and h, determined 
by means of  (32).   

4.  EXAMPLE: ANTICRACK UNDER TENSION 

For illustration, presented is a solution to the problem 
of a rigid circularly-shaped interface inclusion (such that 

( ){ }2 2
1 2 1 2, ,0 :S x x r x x a= ≡ + ≤ ) in a periodic two-layer 

laminated space subjected to a constant normal stress p 
at infinity (see Fig. 1), i.e. 

( ) ( ) ( )33 31 32, 0 .pσ σ σ∞ = ∞ = ∞ =  (36) 

The results for the 0-displacements of the inclusion-free 
problem involving the solution of the basic equations (4) 
and (5) with conditions (36) are readily obtained to be 

0 0

0

1 1 2 2

3 3 3

, ,

,

u A p x u A p x

u A p x

= − = −

=
 (37) 

where 
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( )

( )

13
2

33 11 12 13

11 12
3 2

33 11 12 13

,
2

.
2

c
A

c c c c

c c
A

c c c c

=
+ −

+
=

+ −

 (38) 

Now invoking the displacements in Eqs (37) on the 
plane x3 = 0, we deduce by consideration of symmetry in (8) 
that ε3 = ω1 = ω2 = 0. Thus, we proceed to solving the sub-
problem B (cf (10) and (11)) in which the appropriate con-
ditions are 

( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( )

1 1 2 1 1 3 2 1 2

2 1 2 2 2 3 1 1 2

2
3 1 2 1 2

2
31 1 2 32 1 2 1 2

, ,0 , , ,

, ,0 , , ,

, ,0 0, , ,

, ,0 , ,0 0, , ,
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O as .i

u x x A p x x x x S

u x x A p x x x x S

u x x x x R

x x x x x x R S

u

ε ω

ε ω

σ σ

+

+

+

+ +

= + − ∀ ∈
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= ∀ ∈

= = ∀ ∈ −

 
= →∞  

 

ɶ

ɶ

ɶ

ɶ ɶ

ɶ x
x

(39) 

This problem is reduced to the set of coupled two-
dimensional integral equations (34) in which the right sides 
are determined by the following polynomials: 

( )
( )

1 1 2 1 1 3 2

2 1 2 2 3 1 2

ˆ , ,

ˆ , .

u x x A p x x

u x x x A p x

ε ω
ε ω

= + −

= + +
 (40) 

 An exact solution of these integral equations, obtained 
by using Galin’s theorem, has the form 

 ( ) { }0 1 1 2 2
3 1 2

2 2
, , 1,2 ,

b b x b x
x x

a r

α α α
ασ α+ +

= ∀ ∈
−

ɶ  (41) 

where { } { }, 0,1,2 , 1,2ib iα α∈ ∈ are the unknown constants 

to be determined. Putting (41) into (34) and calculating 
the resulting integrals (see Vorovich et al.,1974), we arrive 
at the equalities of two polynomials. Hence, a system 
of algebraic equations for ib α  can be obtained, and their 

solving yields 

( ) { }3
0

3
12 21 3

11 22

4
, 1,2 ,

2

4
,

4
* .

t
b

k

t
b b

b b AC p

α αε α
π

ω
π

π

= − ∀ ∈
−

= =

= = −

 (42) 

If we now make use of the equilibrium conditions (11) 
on the anticrack we find (as might be expected) that 

 1 2 3 0ε ε ω= = =  (43) 

and the solution given by (41) can be written in the simple 
form 

( ) ( )3 1 2 1 2
2 2

, , , ,0 ,
x

x x B x x S
a r

α
ασ += ∈

−
ɶ  (44) 

where 

4
*B AC p

π
= − . (45) 

Accordingly, the problem is axially symmetric and the 
full elastic field is determined if we find the main potentials 
g and h  (see (21) - (25)). Substituting (44) into (32) we get 

( )
( )

, 3 2 ,2 1 ,2

, 3 1 ,2 2 ,1

,

.

B
g x x

C
B

h x x
C

ϕ κ ϕ κ ψ

ψ κ ψ κ ϕ

= + −

= + −
 (46) 

Here ϕ  and ψ are the potentials of simple layers defined as 

( )
( ) ( )

( )
( ) ( )

1 1 2

2 2 2 2 2 2
1 1 2 2 3 1 2

2 1 2

2 2 2 2 2 2
1 1 2 2 3 1 2

,

,

S

S

d d

x x x a

d d

x x x a

ξ ξ ξϕ
ξ ξ ξ ξ

ξ ξ ξψ
ξ ξ ξ ξ

=
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=
− + − + − −

⌠⌠

⌡⌡

⌠⌠

⌡⌡

x

x

(47) 

for which the method of Fabrikant (1989) yields the explicit 
results in elementary functions as follows 

( )

( )

2 2
2

1 2
2 2

2 2
2

2 2
2 2

arcsin ,

arcsin ,

a l aa
x

l l

a l aa
x

l l

ϕ π

ψ π

 − = −
 
 

 − = −
 
 

x

x

 (48) 

where in his notation 

( ) ( ) ( )

( ) ( ) ( )

2 22 2
1 1 3 3 3

2 22 2
2 2 3 3 3

1
, , ,

2

1
, , .

2

l l a r x r a x r a x

l l a r x r a x r a x

 ≡ = + + − − +  

 ≡ = + + + − +  

 (49) 

All the necessary partial derivatives or some integrals 
of potentials (48) can be found in Appendix 5 of the book 
by Fabrikant (1991), which allows us to write a complete 
solution to problem under study.  

It is of interest to record and discuss the relevant  in-
terfacial stresses in the plane of the anticrack. They are 
given below: 

( ) 2 2
3

4
, 0 ,

,0

0, ,

r

r

p r
r a

r a r

r a

β
σ π±

 ≤ <=  −
 >

∓
ɶ  (50) 

( )
3

33 3

2 2

, 0 ,

ˆ ,0 2
arcsin , ,

p r a

r p a a
r a

rr a

β

σ β
π

±

− ≤ <
  = 

 − >  −  

 (51) 

where (see Appendices) 
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( ) ( )
11 33 44

2
33 11 12 13 11 44

*
2

r
c c c t

AC
c c c c c c

β += =
 + − +
 

, (52) 

( )
( ) ( )

13 44 11 33 13
3 2

11 33 44 33 11 12 13

2

2

c c c c c

c c c c c c c
β

−
=

 + + −
 

 . (53) 

Now, it is significant to observe that the singularity 
of the stresses close to the edge of the anticrack has the 
order r-1/2, contrary to oscillatory type observed in the elas-
tic fields relating to bimaterial interfaces. From the stand-
point of classical fracture mechanics, two failure mecha-
nisms are possible: 
– separation of the material from the inclusion character-

ized by the stress singularity coefficients 

 ( ) ( )II 3
4

lim 2 ,0 r
r

r a

p a
S a r r

βπ σ
π−

± ±

→
= − =ɶ ∓  (54) 

– mode I (edge-opening) deformation characterized by the 
stress intensity factor 

 ( ) ( ) 3
I 33

2
lim 2 ,0

r a

p a
K r a r

βπ σ
π+→

= − =  . (55) 

These parameters may be used to the determination 
of the limiting equilibrium of the considered composite 
weakened by the anticrack (see, e.g. Rahman, 2002).  

Finally, the solution to the corresponding homogeneous 
material problem is the special case when 

1 2 1 2,λ λ λ µ µ µ= ≡ = ≡ , and hence 11 33 2c c λ µ= = + ,  

12 13c c λ= = , 44c µ= . Then Eqs (52) and (53) become 

( )
( )( )

( )
( )( )

( )( )
( )

( )( )3

2 2 1
,

3 3 2 1 3 4

2 1 22

3 3 2 1 3 4

r
λ λ µ ν ν

β
λ µ λ µ ν ν

ν νλ µβ
λ µ λ µ ν ν

+ −
= =

+ + + −

−
= =

+ + + −

 (56) 

with 
( )2

λν
λ µ

=
+

 being Poisson’s ratio, and the results are 

in agreement with those obtained differently by Kassir and 
Sih (1968).   

APPENDIX  A 

Denoting by  

( ) ( ) 1 22 1,2 , 1l l lb l b b bλ µ η η= + = = − + ,  

the positive coefficients in governing equations (4) and (5) 
are given by the following formulas: 

( )( ) ( )

( )

( ) ( ){ }
( )

( ) ( )
( ) [ ]
( )

33 1 2

11 33 1 2 1 2 1 2

13 2 1 1 2

12 1 2 2 1 1 2

44 1 2 1 2
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/ ,

4 1 / ,

1 / ,

2 1 1 / ,

/ 1 ,

4 / ,

2 / ,

/ .

l
l l l l l

l
l l l l

l
l l

c b b b

c c b

c b b b

c b

c

d c b

d c b

d c b

η η µ µ λ λ µ µ

η λ η λ

λ λ η µ η µ η λ η λ

µ µ η µ η µ

µ λ µ λ

µ λ λ

λ

=
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APPENDIX  B 

The constants appearing in Eqs (12) and (13) are given 
as follows: 

( ) ( )
( )

{ }

1 1
1 22 2

3 11 12 44

2
11 44

13 44

, ,

/ 2 ,

, 1,2 ,

t t t t t t

t c c c

c t c
m

c c
α

α α

+ − + −

−

= − = +

= −

−
= ∀ ∈

+

 

where 

( )44

33 44

11 33 13

2
,

.

A c A
t

c c

A c c c

±
±

±

±
=

= ±

∓

 

Note that   1 2 11 33 1 2/ , 1t t c c m m= = . 
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