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Abstract: The positive switched 2D linear systems described by the general models are addressed. Necessary and sufficient 
conditions for the asymptotic stability of the positive switched system are established for any switching. The considerations 
are illustrated by numerical examples. 

1. INTRODUCTION 

In positive systems inputs, state variables and outputs 
take only non-negative values. Examples of positive sys-
tems are industrial processes involving chemical reactors, 
heat exchangers and distillation columns, storage systems, 
compartmental systems, water and atmospheric pollution 
models. A variety of models having positive linear behavior 
can be found in engineering, management science, econom-
ics, social sciences, biology and medicine, etc. 

Positive linear systems are defined on cones and not 
on linear spaces. Therefore, the theory of positive systems 
is more complicated and less advanced. An overview 
of state of the art in positive systems theory is given 
in the monographs Farina and Rinaldi (2000) and Kaczorek 
(2009). 

The most popular models of two-dimensional (2D) lin-
ear systems are the discrete models introduced by Roesser 
(1975), Fornasini and Marchesini (1976, 1978) and Kurek 
(1985). These models have been extended for positive sys-
tems in Kaczorek (1996; 2005) and Valcher (1997). 
An overview of standard and positive 2D systems theory 
is given in Bose (1985), Gałkowski (2001) and Kaczorek 
(1985) and some recent results in positive systems have 
been given in Kaczorek (1996, 2001, 2002, 2005, 2007a, b, 
2009). The stability of switched linear systems has been 
investigated in many papers and books (Colaneri, 2009; 
Liberzon, 2003, 2009; Sun and Ge, 2004). The disturbance 
decoupling problem for switched linear continuous-time 
systems by state-feedback has been considered in Otsuka 
(2010) and the stabilizer design of planar switched linear 
systems in Hu and Cheng (2008). 

In this paper the positive switched 2D linear system de-
scribed by the general models will be considered. We shall 
analyze the following question: When is a positive switched 
2D linear system defined by linear general models 
and a rule describing the switching between them asymp-
totically stable. It is well known (Liberzon, 2003, 2009) 
that a necessary and sufficient conditions for stability under 
arbitrary switching is the existence of a common Lyapunov 
function for the family of subsystems. This result will be 

extended for positive switched 2D linear systems described 
by the general models.  

The paper is organized as follows. Preliminaries and the 
problem formulation are given in section 2. The main re-
sults of the paper are presented in section 3, where neces-
sary and sufficient conditions are established for the asymp-
totic stability of the positive switched  2D linear systems 
described by the general model for any switching. Illustrat-
ing examples are presented in section 4. Concluding re-
marks are given in section 5. In Appendix the definition 
of equilibrium point is given and the formula determining 
the point is derived. 

To the best of the author’s knowledge the positive 
switched 2D linear systems have not been considered yet. 

2. PRELIMINARIES AND THE PROBLEM 
FORMULATION 

Let mn×ℜ  be the set of mn×  real matrices. The set 
mn×  matrices with nonnegative entries will be denoted 

by mn×
+ℜ  and 1×

++ ℜ=ℜ nn . A  matrix  mn
ijaA ×ℜ∈= ][  

(vector x) is called  strictly  positive  and  denoted  by A > 0 
(x > 0) if aij > 0  for  i = 1,…,n; j = 1,…,m. The et of non-
negative integers will be denoted by Z+ and the n x n iden-
tity matrix will be denoted by In. 

The general model of 2D linear system has the form 
(Kurek, 1985): 

1,2,11,0

1,2,11,01,1

++

++++

+++

++=

jijiji

jijijiji

uBuBuB

xAxAxAx
                      (2.1a) 

jijiji uDxCy ,,, += , ., +∈ Zji                                    (2.1b) 

where n
jix ℜ∈, , m

jiu ℜ∈,  and p
jiy ℜ∈,  are the state, 

input and output vectors and 

2,1,0,, =ℜ∈ℜ∈ ×× kBA mn
k

nn
k ; ,npC ×ℜ∈  

mpD ×ℜ∈ . 
Boundary conditions for (2.1a) have the form  
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+∈ℜ∈ Zix n
i ,0  and +∈ℜ∈ Zjx n

j ,0                        (2.2) 
 

The model (2.1) is called (internally) positive general 

model if n
jix +ℜ∈, , and ++ ∈ℜ∈ Zjiy p

ji ,,,  for any non-

negative boundary conditions 
 

,,0 ++ ∈ℜ∈ Zix n
i  ++ ∈ℜ∈ Zjx n

j ,0                             (2.3) 

and all input sequences .,,, ++ ∈ℜ∈ Zjiu m
ji  

Theorem 2.1. [13] The general model is positive if and 
only if 
 

mpnp

mn
k

nn
k

DC

kBA

×
+

×
+

×
+

×
+

ℜ∈ℜ∈

=ℜ∈ℜ∈

,

,2,1,0,,
                             (2.4) 

  

The positive general model (2.1) is called asymptotically 
stable if for any boundary conditions (2.3) and zero inputs 

0, =jiu , +∈ Zji ,   
 

0lim ,
,

=
∞→

ji
ji

x                                                                  (2.5) 

 

Theorem 2.2. (Kaczorek, 2009) The positive general model 
(2.1) is asymptotically stable if and only if  there exists 

a strictly positive  vector n
+ℜ∈λ  such that  

 

0][ <− λnIA , and 210 AAAA ++=                            (2.6) 
 

Theorem 2.3. (Kaczorek, 2009a, b) The positive general 
model (2.1) is asymptotically stable if and only if the posi-
tive 1D linear system  
 

ii xAx =+1                                                                       (2.7) 
 

is asymptotically stable, where matrix A  is given by (2.6). 
Theorem 2.4. (Kaczorek, 2009) The positive general model 
is asymptotically stable if and only if one of the following 
equivalent conditions is met: 

− Eigenvalues nzz ,...,1  of the matrix A  have modules 

less than 1, i.e. 
 

1<kz  for nk ,...,1=                                                   (2.8a) 
 

− All coefficients 1,...,1,0, −= niai  of the characteristic 

polynomial  
 

01
1

1 ...])1(det[)( azazazAzIzp n
n

n
n ++++=−+= −

−  (2.8b) 
 

are positive, i.e. 1,...,1,0,0 −=> niai .  

− All principal minors of the matrix  
 



















=−=

nnnn

n

n

n

aaa

aaa

aaa

AIA

ˆ...ˆˆ

ˆ...ˆˆ

ˆ...ˆˆ

ˆ

21

22221

11211

⋮⋮⋮⋮
                            (2.8c) 

 

are positive, i.e. 
 

0ˆdet,...,0
ˆˆ

ˆˆ
,0ˆ

2221

1211
11 >>> A

aa

aa
a                            (2.8d) 

 

Consider the switched positive system consisting  
of q autonomous positive general models of the form 
  

1,2,11,01,1 ++++ ++= jiljiljilji xAxAxAx , ql ,...,1=      (2.9) 
 

It is assumed that in the point qiZtptp iiii ,...,1,,),,( =∈ +  

the matrices of the general model jump instantaneously 
from ikA  to jkA  for some ji ≠ , qji ,...,1, = ; 2,1,0=k . 

The following question arises: when the switched positive 
general model (2.9) is asymptotically stable for every 
switching if every positive general model of the set is as-
ymptotically stable. 

3. PROBLEM FORMULATION 

To simplify the notation it is assumed q = 2. In this case 
the switched positive system consists of two positive gen-
eral models 
 

1,12,111,101,1 ++++ ++= jijijiji xAxAxAx                     (3.1a)  

1,22,121,201,1 ++++ ++= jijijiji xAxAxAx                    (3.1b) 
 

where nn
lkA ×

+ℜ∈ , 2,1=l ;  2,1,0=k  and the switching 

between them occur in the points 
 

),...,(),,(),...,,( 1111 ++ kkkk tptptp                                   (3.2) 
 

satisfying the condition 
 

kk pp ≥+1 , kk tt ≥+1  and kkkk tptp +>+ ++ 11 ,        (3.3) 

,...2,1=k                               
 

Theorem 3.1. (Kaczorek, 2001) The solution of the 
autonomous ( 0, =jiu , +∈ Zji , ) positive general model 

(3.1a) with boundary conditions (2.3) is given by  
 

∑+

∑+∑+

∑+=

=
−−

=
−−

−

=
−−−

−

=
−−−−−

j

v
vvji

i

t
tjti

j

v
vvji

i

t
tjtijiji

xAT

xATxAT

xATxATx

1
02,1

1
011,

1

1
001,1

1

1
001,10001,1,

               (3.4) 

 

where the transition matrix ijT  is defined by 
 









<<
>+≥

==
++= −−−−

0or0

)0(0,

0

for

for

for

0
1,1,121,10

ji

jiji

ji

TATATA

I

T jijiji

n

ij

(3.5) 
 

Using (3.4), (3.5) and the boundary conditions (2.3) 
we can compute the state vector ijx  for +∈ Zji , . 
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Theorem 3.2. The switched positive system (3.1) is asymp-
totically stable for any switching (3.2) satisfying (3.3) only 
if both positive models (3.1) are asymptotically stable. 
Proof. Without loss of generality we may assume that the 
first model (3.1a) is asymptotically stable and the second 
(3.1b) is unstable. For any bounded boundary conditions 
(2.3) using (3.4), (3.5) and the first model we may compute 
boundary conditions for the second model which will be 
bounded since the first model is asymptotically stable. 
In the similar way we may compute the boundary condi-
tions for the first model but those boundary conditions will 
be greater than those for the second model since it is unsta-
ble. Therefore, the switched positive general model will be 
unstable. 

In (Kaczorek, 2007) it was shown that for positive 
model (2.1a) as a Lyapunov function a linear form 

ij
T

ij xxV λ=)(  can be chosen, where n
+ℜ∈λ  is strictly 

positive. 
For the switched positive system consisting of positive 

models (3.1) we choose Lyapunov functions in the form  
 

ij
T

ij xxV 11 )( λ=  and ij
T

ij xxV 22 )( λ=                           (3.6) 
 

where  the strictly positive vectors 1λ  and 2λ  satisfy the 

equations 
 

nA 1111 += λλ , 1222 λλλ += A , nT
n +ℜ∈= ]1...11[1   (3.7) 

 

and 210 kkkk AAAA ++= , k = 1,2. 

If A1 and A2 are Schur matrices then from (3.7) we have 
 

nn AI 1][ 1
11

−−=λ  and 1
1

22 ][ λλ −−= AI n                  (3.8) 
 

Remark 3.1. From the comparison of (3.3) and (A.2), (A.3) 
it follows that as λ1 we can choose equilibrium point xe 
for Bu = 1n and as λ2 the vector ex  for Bu = λ1. 

Lemma 3.1. The function 
 

ij
T

ij xxV 22 )( λ=                                                              (3.9) 
 

is a common Lyapunov function for the both positive gen-
eral models (3.1) if  
 

1221 AAAA =                                                                 (3.10) 
 

Proof. The function (3.9) for both positive Roesser models 

(3.1) for strictly positive n
+ℜ∈2λ  is positive if and only 

if 0≠ijx . Note that the dual general models 

1,12,111,101,1 ++++ ++= ji
T

ji
T

ji
T

ji xAxAxAx           (3.11a)  

1,22,121,201,1 ++++ ++= ji
T

ji
T

ji
T

ji xAxAxAx          (3.11b) 
 

are positive and asymptotically stable if and only if the cor-
responding general models (3.1) are positive and asymp-
totically stable (Kaczorek, 2007). Taking into account 
Theorem 2.3 and using (3.9) for the positive general model 
(3.1a) we obtain  
 

ijn
T

ij xIAxV ][)( 122 −=∆ λ                                          (3.12)  

and  
 

1
212 ][ −−= AI n

TT λλ                                                  (3.13) 
 

since 1222 λλλ += TA . 

Substitution of (3.13) into (3.12) yields 
 

0][1

]][[

][][)(

1
2

1
211

1
1

212

<−−=

−−=

−−=∆

−

−

−

ijn
T

n

ijnn
T

ijnn
T

ij

xAI

xAIIA

xIAAIxV

λ

λ

                       (3.14)  

 

for every n
ijx +ℜ∈ , 0≠ijx , since (3.10) implies  

[A1 – In][ In – A2] 
–1=[In – A2]

–1[A1 – In]  and the sum of en-
tries of each column of the matrix 1n

T[In – A2]
–1 is positive 

for the positive asymptotically stable general model (3.1b) . 
Similarly, using (3.9) for positive general model (3.11b) 

we obtain 
 

0][)( 222 <−=∆ ijn
TT

ij xIAxV λ                                (3.15)  
 

for every n
ijx +ℜ∈ , 0≠ijx , since ]0...0[][ 22 <− n

TT IAλ . 

Theorem 3.3. Let the matrices A1 and A2 of (3.1) satisfy the 
conditions (3.10). The positive switched system (3.1) 
is asymptotically stable for any switching (3.2) satisfying 
(3.3) if and only if the positive models (3.1) are asymptoti-
cally stable. 
Proof. Necessity follows immediately from Theorem 3.2. 
If the condition (3.10) is met and the models (3.1) are as-
ymptotically stable then by Lemma 3.1 the function (3.9) 
is a common Lyapunov function for the positive models 
(3.1) which satisfies the conditions (3.14) and (3.15). 
Therefore, the positive switched system (3.1) is asymptoti-
cally stable.  
Remark 3.2. It is well-known (Kaczorek, 2001) that substi-
tuting B1 = B2 = 0 into (2.1) we obtain the first Fornasini-
Marchesini model and substituting A0 = 0 and B0 = 0 
we obtain second Fornasini-Marchesini model. 

Consider the positive 2D Roesser model (Kaczorek, 
2001):  
 

1, 11 12 , 11
,

, 1 21 22 , 22

h h
i j i j

i jv v
i j i j

x A A x B
u

x A A x B
+

+

      
= +      

         

                      (3.16a) 

[ ] ,
, 1 2 ,

,

,
h
i j

i j i jv
i j

x
y C C Du i j Z

x +

 
= + ∈ 

  

                     (3.16b) 

 

where 1
,

nh
jix +ℜ∈  and  2

,
nv

jix +ℜ∈  are the horizontal 

and vertical state vectors at the point ),( ji  m
jiu +ℜ∈,  

and p
jiy +ℜ∈,  are the input and output vectors 

and ,2,1,, =ℜ∈ ×
+ lkA lk nn

kl  ,, 21
2211

mnmn BB ×× ℜ∈ℜ∈  
mpnpnp DCC ××× ℜ∈ℜ∈ℜ∈ ,, 21

21 . 

The positive 2D Roesser model (3.16) is a particular 
case of the positive second Fornasini-Marchesini model for  
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,
00

2221
1 








=

AA
A  








=

00
1211

2
AA

A ,                       (3.17a)  

,
0

22
1 








=

B
B  








=

0
11

2
B

B                                            (3.17b) 

 

Therefore, the presented results are also valid for the 
positive Fornasini-Marchesini models and the positive 
Roesser model. 

4. ILLUSTRATING EXAMPLES 

Example 4.1. Consider the positive switched system con-
sisting of two general models (3.1) with the matrices 

 









=








=








=









=








=








=

05.03.0

005.0
,

05.04.0

00
,

1.02.0

005.0

,
1.00

2.05.0
,

2.00

5.01
,

1.00

3.05.0

222120

121110

AAA

AAA

                          

(4.1) 
 

and the boundary conditions 
 

,...2,1,,
0

0
,

1

1
0000 =








==








= jixxx ji                        (4.2) 

 
 
The switching occurs between them in the points  
 

),...6,6(),4,5(),3,3(),1,2(                                                  (4.3) 
 

The first model is unstable since the matrix 









=++=

4.00

12
1211101 AAAA  has one diagonal entry 

greater than 1 (Kaczorek, 2009) and the second model 
is asymptotically stable. By Theorem 3.2 the positive 
switched system is unstable since lim xi,j = ∞ (Fig.1). 
Example 4.2. Consider the positive switched system con-
sisting of two general models (3.1) with the matrices 
 









=








=








=









=








=








=

1.02.0

1.02.0
,

02.0

1.01.0
,

1.02.0

03.0

,
1.01.0

01.0
,

1.01.0

05.02.0
,

01.0

05.01.0

222120

121110

AAA

AAA

 (4.4) 

 

and the boundary conditions (4.2). 

 

Fig. 1a. State variables of the first system with A1 

 
Fig. 1b. State vector for second system with A2 



Tadeusz Kaczorek 
Positive switch 2D linear systems described by the general models 

40 

 

 
 
Fig. 2. State variables of the system with switches 

 
 
Fig. 3. State variables of the system with switches

The switching occur between them in the points (4.3). 
In this case both general models are asymptotically sta-

ble and the matrices satisfy the condition (3.10). By Theo-
rem 3.3 the positive switched system with (4.3) and (4.2) 
is asymptotically stable (Fig. 2). 

The presented considerations can be easily extended to 
the positive switched linear systems consisting of q (q > 2) 
autonomous general models. 

5. CONCLUDING REMARKS 

The positive switched 2D linear systems described 
by the general models have been addressed. Necessary 
and sufficient conditions have been established for the as-
ymptotic stability of the positive switched systems for any 
switching. 

The considerations for positive switched 2D linear sys-
tems described by the Fornasini-Marchesini models and the 
Roesser 2D model are particular cases of the positive 
switch 2D linear systems described by the general model. 
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APPENDIX 

Consider the positive asymptotically stable general 
model (2.1) for the positive constant input ui,j = u. 
Definition A.1. A state xe satisfying the equation 
 

210210 ,, BBBBAAAAuBxAx ee ++=++=+=   (A.1) 
 

is called the equilibrium point of the positive asymptoti-
cally stable general model (2.1) for u > 0. 
Theorem A.1. The equilibrium point of the positive general 
model (2.1) is given by 
 

uBAIxe
1][ −−= .                                                         (A.2) 

  

Proof. If the system is asymptotically stable then the matrix 
][ AI −  is invertible and from (A.1) we obtain (A.2).  

From (A.1) it follows that for positive general model xe 
is strictly positive if Bu is strictly positive vector. 
In particular case from (A.2) for nuB 1= , 

nT
n +ℜ∈= ]1...1[1  we obtain strictly positive vector 

 

01][ 1 >−= −
ne AIx .                                                    (A.3) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 

 
 
 


