PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Finite element analysis of temperature distribution in axisymmetric model of disc brake

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A transient thermal analysis is developed to examine temperature expansion in the disc and pad volume under simulated operation conditions of single braking process. This complex problem of frictional heating has been studied using finite element method (FEM). The Galerkin algorithm was used to discretize the parabolic heat transfer equation for the disc and pad. FE model of disc/pad system heating with respect to constant thermo-physical properties of materials and coefficient of friction was performed. The frictional heating phenomena with special reference to contact conditions was investigated. An axisymmetric model was used due to the proportional relation between the intensity of heat flux perpendicular to the contact surfaces and the rate of heat transfer. The time related temperature distributions in axial and radial directions are pre- sented. Evolution of the angular velocity and the contact pressure during braking was assumed to be nonlinear. Presented transient finite element analysis facilitates to determine temperature expansion in special conditions of thermal contact in axisymmetric model.
Rocznik
Strony
23--28
Opis fizyczny
Bibliogr. 16 poz., rys., tab., wykr.
Twórcy
autor
Bibliografia
  • 1. Chichinadze A. V., Braun E. D., Ginsburg A. G. et al.(1979), Calculation, test and selection of frictional couples, Science, Moscow (in Russian).
  • 2. Gao C. H., Lin X. Z. (2002), Transient temperature field analysis of a brake in a non-axisymmetric three-dimensional model, J. Mater. Proc. Technol., Vol. 129, No. 1, 513–517.
  • 3. Grześ P. (2009), Finite element analysis of disc temperature during braking process, Acta mechanica et automatica, Vol. 3, No. 4, 36-42.
  • 4. Lewis R. W., Nithiarasu P., Seetharamu K. N. (2004), Fundamentals of the finite element method for Heat and Fluid Flow, John Wiley & Sons.
  • 5. Ling F. F. (1973), Surface mechanics, John Wiley & Sons, New York.
  • 6. Nowacki W. (1962), Thermoelasticity, Pergamon Press, Oxford.
  • 7. Qi H.S., Day A.J. (2007), Investigation of disc/pad interface temperatures in friction braking, Wear, Vol. 262, No. 5-6, 505–513.
  • 8. Ramachandra Rao V. T. V. S., Ramasubramanian H. and Seetharamu K. N. (1989), Analysis of temperature field in brake disc for fade assessment, Wärme- und Stoffübertragung, Vol. 24, No. 1, 9-17.
  • 9. Ścieszka S., Żołnierz M. (2007), Wpływ cech konstrukcyjnych hamulca tarczowego maszyny wyciągowej na jego niestabilność termosprężystą. Część I. Budowa modelu MES i jego weryfikacja, Zagadnienia Eksploatacji Maszyn, Vol. 42, No. 3, 111-124.
  • 10. Ścieszka S., Żołnierz M. (2007), Wpływ cech konstrukcyjnych hamulca tarczowego maszyny wyciągowej na jego niestabilność termosprężystą. Część II. Badania symulacyjne, Zagadnienia Eksploatacji Maszyn, Vol. 42, No 4, 183-193.
  • 11. Taguchi G. (1993), Taguchi on Robust Technology Development, ASME Press, New York.
  • 12. Talati F., Jalalifar S. (2008), Investigation of heat transfer phenomena in a ventilated disk brake rotor with straight radial rounded vanes, Journal of Applied Sciences, Vol. 8, No. 20, 3583-3592.
  • 13. Talati F., Jalalifar S. (2009), Analysis of heat conduction in a disk brake system, Heat Mass Transfer, Vol. 45, No. 8, 1047-1059.
  • 14. Yevtushenko A. A., Ivanyk E. G., Yevtushenko O. O.(1999), Exact formulae for determination of the mean temperature and wear during braking. Heat and Mass Transfer, Vol. 35, No. 2, 163–169.
  • 15. MSC.Software (2008), Reference Manual MD Nastran, Version r2.1.
  • 16. MSC.Software (2008), Reference Manual MD Patran, Version r2.1.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0048-0005
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.