Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the paper three graph-based methods of planetary gear modeling are discussed. The following methods have been considered: Hsu’s graph, contour graph and bond graphs-based methods. The theoretical ideas of the mentioned approaches were shortly revised and compared. Two of them were applied for analysis of an exemplary planetary gear. The consistency with traditional Willis method was checked. Advantages of the proposed approaches are highlighted.
Czasopismo
Rocznik
Tom
Strony
14--18
Opis fizyczny
Bibliogr. 16 poz., rys., tab.
Twórcy
autor
autor
- Faculty of Mechanical Engineering and Computer Science, University of Bielsko-Biała, Bielsko-Biała, jdrewniak@ath.bielsko.pl
Bibliografia
- 1. Cervantes-Sanchez J.J., Rico-Martinez J.M., LasesmaJaime R., Barroso-Hernandez J.L. (2009), Simulation of planetary gear trains, modeling and numerical validation, J. Multi-body dynamics, Vol. 223, 53-71.
- 2. Drewniak J., Zawiślak S. (2009a), Synthesis of planetary gears by means of artificial intelligence approach especially graph-theoretical modeling, Mechatronic Systems and Materials, Vilnius, 126-128.
- 3. Drewniak J., Zawiślak S. (2009b), Analysis and Modification of Planetary Gears Based upon Graph-theoretical Models, Transactions of the Universities of Košice, No 2, 84-87.
- 4. Drewniak J., Zawiślak S. (2010a), Kinematical and dynamical analysis of closed kinematical chains using graphs and profile equations, PAMM, No 9, 547-548.
- 5. Drewniak J., Zawiślak S. (2010b), Linear-graph and contourgraph-based models of planetary gears, J. of Applied and Theoretical Mechanics, Vol. 48 No 2, 415-433.
- 6. Lang S.Y.T. (2005), Graph-theoretic modelling of epicyclic gear system, Mech. Mach. Theory, Vol.40, 511-529.
- 7. Marghitu D.B. (2005), Kinematic chains and machine components design, Elsevier, Amsterdam, San Diego; Academic Press, London.
- 8. Nagaraj H.S., Hariharan R. (1973), Flow-graph techniques for epicyclic gear train analysis, International Journal of Control, Vol. 17, No 2, 263-272.
- 9. Prahasto T. (1992), Planetary gear analysis using the vector network method, MSc-Thesis, (Supervisor: Prof. Andrews), University of Waterloo.
- 10. Rao A.C. (2000), A genetic algorithm for topological characteristics of kinematic chains, ASME J. of Mechanical design, Vol. 122, 228-231.
- 11. Tsai L.W. (2001), Mechanism design. Enumeration of kinematic structures according to function, CRC Press Boca Raton, Florida.
- 12. Wojnarowski J., Kopeć J., Zawiślak S. (2006), Gears and graphs. J. of Applied and Theoretical Mechanics, Vol. 44, No 1, 139-162.
- 13. Wojnarowski J., Lidwin A. (1975), The application of signal flow graphs - the kinematic analysis of planetary gear trains, Mechanism and Machine Theory, Vol. 10 (1-B), 17-31.
- 14. Zawiślak S. (2008), Graph theoretic based models of planetary gears, Teoria Maszyn i Mechanizmów, Editors.: J. Wojnarowski, I. Adamiec-Wójcik, Wyd. ATH, 67-74.
- 15. Zawiślak S. (2010), Graph-base methodology as an artificial intelligence aid for mechanical engineering design, BielskoBiała.
- 16. Zhang M., Liao N., Zhou C. (2010), A modified Hopfield neuronal networks model for graphs-based kinematic structure design, Engineering with Computers, Vol. 26, 75-80.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0048-0003