PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Trefftz functions and application to 3D elasticity

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
When solving complex boundary value problems, the primary advantage of the Trefftz method is that Tr-efftz functions a priori satisfy the governing differential equations. For the treatment of three-dimensional isotropic elasticity problems, it is proposed that the bi-harmonic solutions in Boussinesq's method can be expressed as half-space Fourier series to bypass the difficulties of integral ion. A total of 29 Trefftz terms for each component of the displacement vectors are derived from (he general solutions of the elasticity system. Numerical assessments on the proposed formulations arc performed through two examples (a cubic and a cylindrical body). Results arc compared with those from the method of fundamental solutions (MFS) and the commercial finite element method (FEM) software STRAND 7, suggesting that Trefftz functions can provide pseudo-stability, faster convergence and reduced error margins.
Rocznik
Strony
251--263
Opis fizyczny
Bibliogr. 15 poz., tab., wykr.
Twórcy
autor
autor
autor
  • Henan University of Technology, Zhengzhou, China
Bibliografia
  • [1] J.R. Barber. Three-dimensional elasticity solutions for isotropic and generally anisotropic bodies. Appl. Mech.Mater., 5-6: 541-550, 2006.
  • [2] Y.K. Cheung, W.G. Jin, O.C Zienkiewicz. Direct solution procedure for solution of harmonic problems Rusing complete, non-singular, Trefftz functions. Coram. Appl. Num. Meth., 5: 159-169, 1989.
  • [3] B.M. Filonenko. Theory of Elasticity. Scientific Publishers, The Netherlands, 1959.
  • [4] Q. Guan, S.R. He. Three-dimensional analysis of piezoelectric/piezomagnetic elastic media. Compos. Struct., 72: 419 428, 2000.
  • [5] I. Herrera Boundary methods: A criterion for completeness. Proc. Nat. Acad. Sci., 4395-4398, 1980.
  • [6] W. G. Jin, Y.K. Cheung. Trefftz direct method. Adv. Engrg. Software, 24: 65-69, 1995.
  • [7] E. Kita, N. Kamiya. Trefftz method: an overview. Adv. Engrg. Software, 24: 3-12, 1995.
  • [8] D.L. Logan. Finite Element Method. Thomson Learning, USA, 2002.
  • [9] E. A. W. Maunder. Trefftz in Translation. 3rd International Trefftz Conference, pp. 1-24, 2002.
  • [10] R. Piltner. The use of complex valued functions for the solution of three-dimensional elasticity problems. J. Elas-18. 191 225, L987. Qin. The Trefftz Finite and Boundary Element Method. WIT Press, UK, 2000.
  • [11] S. P. Timoshenko. History of Strength of Materials. McGraw-Hill, USA, 1953.
  • [12] E. Trefftz. A counterpart to Ritz's method. In: Proceedings of the 2nd International Congress of Applied Mechanics: 131-137, 1926.
  • [14] Z. K. Wang, S.H. Huang. The general solution of three dimensional problems in piezoelectric media. Int. J. Solids id., 32: 105 115, 1995.
  • [15] A. P. Zieliński. On trial functions applied in the generalized Trefftz method. Adv. Engrg. Software, 24: 147-155,
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0047-0001
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.