PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

O pewnych zagadnieniach mechaniki pękania ciał z ostrymi i zaokrąglonymi karbami V

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
On selected fracture mechanics problems for bodies with sharp and rounded V-notches
Języki publikacji
PL
Abstrakty
PL
Przedstawiono przegląd badań z zakresu mechaniki pękania ciał stałych z karbami typu V. Część pierwszą poświęcono metodom rozwiązywania płaskich zadań teorii sprężystości dla obszarów z punktami kątowymi na konturach brzegowych. Zwrócono szczególną uwagę na opracowane przez Autorów jednolite podejście do rozwiązywania zagadnień koncentracji naprężeń w otoczeniu karbów ostrych i zaokrąglonych w obszarach sprężystych. W drugiej części przeanalizowano kryteria pękania ciał z karbami. Na podstawie rozwiązania zagadnienia sprężysto-plastycznego w ramach modelu pasm plastyczności, nieskończonego zaokrąglonego karbu w płaszczyźnie, zaproponowano nowe odkształceniowe kryterium pękania ciał z takimi karbami.
EN
The review of research in the field of fracture mechanics of solids with V-shaped notches was presented. First, we analyzed methods for solving two-dimensional problems of elasticity for domains with angular points. We considered numerical methods of finite and boundary elements, boundary collocation and method of singular integral equations. Particular attention was paid to a unified approach to solving problems of stress concentration near the sharp and rounded V-notches. This approach is based on applying the method of singular integral equations for elastic domains with rounded corners, i.e. the areas with a smooth border. Using modern computers and new methods of calculating quasi-singular integrals allowed obtaining solutions of problems for very small radii of curvature at the notch apex. Applying limit transition we found the stress intensity factors in sharp V-notch vertices. Some known and new results were obtained by this approach. Then, we considered the fracture criteria of solids with notches. Based on the solution of the problem of rounded V-notch with plastic strip at top a new deformation fracture criterion was proposed.
Rocznik
Strony
113--123
Opis fizyczny
Bibliogr. 84 poz., Wykr.
Twórcy
autor
autor
Bibliografia
  • 1. Akin J. E. (1976) The generation of elements with singularities, Int. J. Numer. Meth. Eng., 10, 1249–1259.
  • 2. Benthem J. P. (1987) Stresses in the region of rounded corners, Int. J. Solids Struct., 23(2), 239 – 252.
  • 3. Berkun V. B., Procenko A. M. (1985) Čislennoe rešenie ploskoj zadači mehaniki hrupkogo razrušenija, Mehanika tvördogo tela. Izv. AN SSSR, 4, 141–147.
  • 4. Brahtz J. H. A. (1933a) Stress distribution in a reentrant corner, Trans. ASME., 55, 31–37.
  • 5. Brahtz J. H. A. (1933b) Stress distribution in wedges with arbitrary boundary forces, J. Appl. Phys., 4(2), 56–65.
  • 6. Carpenter W. C. (1984) A collocation procedure for determining fracture mechanics parameters at a corner, Int. J. Fract., 24(4), 255–266.
  • 7. Carpenter W. C. (1985) The eigenvector solution for a general corner or finite opening crack with further studies on the collocation procedure, Int. J. Fract., 27, 63–73.
  • 8. Carpinteri A., Cornetti P., Pugno N., Sapora A., Taylor, D. (2008) A finite fracture mechanics approach to structures with sharp v-notches, Eng. Fract. Mech., 75, 1736 – 1752.
  • 9. Chen D. H. (1995) Stress intensity factors for V-notched strip under tension or in-plane bending, Int. J. Fract., 70, 81–97.
  • 10. Chen Y.-H., Lu T. J. (2004) On the path dependence of the J-integral in notch problems, Int. J. Solids Struct., 41, 607–618.
  • 11. Čerepanov G. P. (1974) Mehanika hrupkogo razruŝeniâ. Nauka.
  • 12. Davis J. R. (2004) Tensile Testing. ASM International, 2 edn.
  • 13. Dini D., Hills D. (2004) Asymptotic characterization of nearly-sharp notch root stress fields, Int. J. Fract., 130, 651–666.
  • 14. Dunn M. L., Suwito W., Cunningham S., May C. W. (1997) Fracture initiation at sharp notches under mode i, mode ii, and mild mixed mode loading, Int. J. Fract., 84(4), 367–381.
  • 15. Dunn M. L., Suwito W., Cunningham S. (1997a) Fracture initiation at sharp notches: correlation using critical stress intensities, Int.l J. Solids Struct., 34(29), 3873 – 3883.
  • 16. Dunn M. L., Suwito W., Cunningham S. (1997b) Stress intensities at notch singularities, Eng. Fract. Mech., 57(4), 417 – 430.
  • 17. Fan Z., Long Y. (1992) Sub-region mixed finite element analysis of v-notched plates, Int. J. Fract., 56, 333–344.
  • 18. Filippi S., Lazzarin P., Tovo R. (2002) Developments of some explicit formulas useful to describe elastic stress fields ahead of notches in plates, Int. J. Solids Struct., 39, 4543 – 4565.
  • 19. Gecit M. R. (1983) An integral equation approach for simultaneous solution of rectangular hole and rectangular block problems, Int. J. Eng. Sci., 21(9), 1041–1051.
  • 20. Givoli D., Rivkin L. (1993) The dtn finite element method for elastic domains with cracks and entrant corners, Comput. Struct., 49, 633–642.
  • 21. Givoli D., Rivkin L., Keller J. B. (1992) A finite element method for domains with corners, Int. J. Numer. Meth. Eng., 35(6), 1329–1345.
  • 22. Gomez F. J. Elices M. (2003) A fracture criterion for sharp v-notched samples, Int. J. Fract., 123, 163–175.
  • 23. Gomez F. J., Elices M. (2004) A fracture criterion for blunted v-notched samples, Int. J. Fract., 127(3), 239–264.
  • 24. Gross B., Mendelson A. (1972) Plane elastostatic analysis of v-notched plates, Int. J. Fract. Mech., 8(3), 267–276.
  • 25. Ibragimov V., Romančak V. M. (1984) O kriterii razrušeniâ dlâ oblastej c uglovymi točkami, Teor. i prikl. meh., 11, 9–13.
  • 26. Kalandiâ A. I. (1969) Zamečaniâ ob osobennosti uprugih rešenij vblizi uglov, Prikl. matematika i mehanika, 33(1), 132–135.
  • 27. Karp S. N. Karal F. C. J. (1962) The elastic-field behaviour in the neighbourhood of a crack of arbitrary angle, Commun. Pure Appl. Math., 15(4), 413–421.
  • 28. Kazberuk A. (2007) Koncentracja naprężeń wokół owalnego otworu, Acta Mechanica et Automatica, 1(2), 25–30.
  • 29. Keer L. M., Chantaramungkorn K. (1975) An elastic half plane weakened by a rectangular trench, J. Appl. Mech., 42(3), 683–687.
  • 30. Knesl Z. (1991) A criterion of v-notch stability, Int. J. Fract., 48, R79–R83.
  • 31. Krasovs’kyi A. Y. (2006) On the "local approach" to the brittle fracture of structural materials, Materials Science, 42(2), 183–188.
  • 32. Lazzarin P., Tovo R. (1996) A unified approach to the evaluation of linear elastic stress fields in the neibourhood of cracs and notches, Int. J. Fract., 78(1), 3–19.
  • 33. Lazzarin P., Zambardi R. (2001) A finite-volume-energy based approach to predict the static and fatigue behavior of components with sharp v-shaped notches, Int. J. Fract., 112(3), 275 – 298.
  • 34. Leguillon D. (2001) A criterion for crack nucleation at a notch in homogeneous materials, C.r. Acad. sci., Ser. 2b, 329, 97–102.
  • 35. Leguillon D. (2002) Strength or toughness? a criterion for crack onset at a notch, Eur. J. Mech. A/Solids, 21, 61–72.
  • 36. Lin K. Y., Tong P. (1980) Singular finite elements for the fracture analysis of v-notched plate, Int. J. Numer. Meth. Eng., 15(9), 1343–1354.
  • 37. Livieri P. (2003) A new path independent integral applied to notched components under mode i loading, Int. J. Fract., 123, 107–125.
  • 38. Morozov, E. M. (2001) Opredelenie vâzkosti razrušeniâ na obrazcah s razrezami. Išlinskij, A. U. (ed.), Problemy mehaniki neuprugih deformacij, 229–235, Fizmatlit.
  • 39. Morozov N. F. (1984) Matematičeskie voprosy teorii treŝin. Nauka, Moskva.
  • 40. Mroz Z. Seweryn A. (1998) Non-local failure and damage evolution rule: application to a dilatant crack model, Journal De Physique. IV : JP, 8(8), 257 – 268.
  • 41. Muskhelišvili N. I. (1966) Nekotorye osnovnye zadači matematičeskoj teorii uprugosti. Izdatelstvo Akademii Nauk SSSR, 5 edn.
  • 42. Neuber H. (1937) Kerbspannungslehre: Grundlagen für genaue Spannungsrechnung. Berlin, Verlag von Julius Springer, 1 edn.
  • 43. Noda N. A., Oda K., Inoue T. (1996) Analysis of newly-defined stress intensity factors for angular corners using singular integral equations of the body force method, Int. J. Fract., 76, 243–261.
  • 44. Noda N.-A., Sera M., Takase Y. (1995) Stress concentration factors for round and flat test specimens with notches, Int. J. Fatig., 17(3), 163–178.
  • 45. Noda N.-A., Takase Y. (2003) Generalized stress intensity factors of v-shaped notch in a round bar under torsion, tension, and bending, Eng. Fract. Mech., 70(11), 1447–1466.
  • 46. Novožilov V. V. (1969a) O neobhodimom i dostatočnom kriterii hrupkoj pročnosti, Prikl. matematika i mehanika, 33(2), 212–222.
  • 47. Novožilov, V. V. (1969b) K osnovam teorii pavnovesnyh treŝin v uprugih telah, Prikl. matematika i mehanika, 33(5), 797–812.
  • 48. Panasûk V. V., Andrejkiv A. E., Parton V. Z. (1988) Osnovy mehaniki razrušeniâ materialov. Naukova Dumka.
  • 49. Panasyuk V. V., Savruk M. P. (1992) Model for plasticity bands in elastoplastic failure mechanics, Materials Science, 28(1), 41–57.
  • 50. Panasyuk V. V., Vitvitskii P. M., Yarema S. Y. (1975) Plastic deformation around crack and fracture criteria, Eng. Fract. Mech., 7(2), 305–319.
  • 51. Peterson R. E. (1974) Stress concentration factors. John Wiley & Sons, 1 edn.
  • 52. Petkov Z. B., Gospodinov G. K. (1992) Evaluation of fracture mechanics parameters for a general corner using a weight function method, Acta Mech., 93, 145–155.
  • 53. Portela A., Aliabadi M. H., Rooke D. P. (1991) Efficient boundary element analysis of sharp notched plates, Int. J. Numer. Meth. Eng., 32, 445–470.
  • 54. Rice J. R. (1968) A path independent integral and the approximate analysis of strain concentrations by notches and cracks, J. Appl. Mech., 35(2), 379–386.
  • 55. Rösel R. (1987) On the wedge/notch eigenvalue, Int. J. Fract., 33(1), 61–71.
  • 56. Savin G. N. (1968) Raspredelenie naprâženij okolo otverstij. Kiev, Naukova Dumka, Kiev.
  • 57. Savruk M. P. (1981) Dvumernye zadači uprugosti dlâ tel s treŝinami. Naukova Dumka, Kiev.
  • 58. Savruk M. P. (1988) Koèfficienty intensivnosti naprâženij v telah s treŝinami, vol. 2 of Mehanika razrušeniâ i pročnost’ materialov: Sprav. posobie pod red. V.V. Panasûka. Naukova Dumka, Kiev.
  • 59. Savruk M. P., Dacyšin A. P. (1974) O vzaimodejstvii sistemy treŝin s granicej uprogogo tela, Prikladnaâ mehanika, 10(7), 84–92.
  • 60. Savruk M.P., Kazberuk A. (2006) Relationship between the stress intensity and stress concentration factors for sharp and rounded notches, Materials Science, 42(6), 725 – 738.
  • 61. Savruk M.P., Kazberuk A. (2007a) A unified approach to problems of stress concentration near v-shaped notches with sharp and rounded tip, Int. Appl. Mech., 43(2), 182 – 197.
  • 62. Savruk M. P., Kazberuk A. (2007b) Edinyj podhod k rešeniû zadač o raspredelenii naprâženij okolo ostryh i zakruglennyh uglovyh vyrezov, Mhitarân, S. M. (ed.), Aktual’nye problemy mehaniki splošnoj sredy, 359–363, Erevan, Erevanskij gos. un-t arhitektury i stroitel’stva.
  • 63. Savruk M. P., Kazberuk A. (2008) Plane periodic boundary-value problem of elasticity theory for a half-plane with curvilinear edge, Material Science, 44(4), 461–470.
  • 64. Savruk M. P., Osiv P. N., Prokopčuk I. V. (1989) Čislennyj analiz v ploskih zadačah teorii treŝin. Naukova Dumka, Kiev.
  • 65. Savruk M. P., Zavodovs’kyi A. M., Panasyuk V. E. (2005) Pro rujnuvannâ til z kutovimi birizami v umovah ploskoï deformaciï, Mehanika i fizika rujnuvannâ budivel’nih materialiv ta konstrukcij, 6, 140–147, L’viv.
  • 66. Savruk M. P., Zavodovs’kyi A. M., Panasyuk V. E., Bida N. M. (2003) Deformation fracture criterion for bodies with v-notches under symmetric loading, Materials Science, 39(2), 185 – 196.
  • 67. Severyn A. (1990) Asymtotyczne metody obliczania współczynników intensywności naprężeń dla karbów trójkątnych w płaskich zagadnieniach teorii sprężystości, Rozprawy Inżynierskie, 38, 467 – 486.
  • 68. Seweryn A. (1994) Brittle fracture criterion for structures with sharp notches, Eng. Fract. Mech., 47, 673 – 681.
  • 69. Seweryn A. (1998) Non-local stress and strain energy release rate mixed mode fracture initiation and propagation criteria, Eng. Fract. Mech., 59(6), 737 – 760.
  • 70. Seweryn A. (2002) Modeling of singular stress fields using finite element method, Int. J. Solids Struct., 39, 4787 – 4804.
  • 71. Seweryn A. (2003) Metody numeryczne w mechanice pękania. Warszawa, IPPT PAN.
  • 72. Seweryn A., Adamowicz A. (2002) Modelowanie pól naprężeń w elementach ze szczelinami i ostrymi karbami, Przegląd Mechaniczny, 1, 36–41.
  • 73. Seweryn A., Molski K. (1996) Elastic stress singularities and corresponding generalized stress intensity factors for angular corners under various boundary conditions, Eng. Fract. Mech., 55(4), 529 – 556.
  • 74. Seweryn A., Łukaszewicz A. (2000) Numeryczne metody modelowania zagadnień liniowej mechaniki pękania, Przegląd Mechaniczny, 5-6, 36–42.
  • 75. Seweryn A., Łukaszewicz A. (2002) Verification of brittle fracture criteria for elements with V-shaped notches, Eng. Fract. Mech., 69, 1487 – 1510.
  • 76. Seweryn A., Mróz Z. (1995) Non-local stress failure condition for structural elements under multiaxial loading, Eng. Fract. Mech., 51(6), 955 – 973.
  • 77. Sih G. C., Ho J. W. (1991) Sharp notch fracture strength characterized by critical energy density, Theor. Appl. Fract. Mech., 16, 179–214.
  • 78. Sinclair G. B., Okajima M., Griffin J. M. (1984) Path independent integrals for computing stress intensity factors at sharp notches in elastic plates, Int. J. Numer. Meth. Eng., 20, 999–1008.
  • 79. Strandberg M. (1999) A numerical study of the elastic stress field arising from sharp and blunt v-notches in sent-specimen, Int. J. Fract., 100(4), 329–342.
  • 80. Theocaris P. S., Ioakimidis N. I. (1979) The v-notched elastic half-plane problem, Acta Mechanica, 32, 125–140.
  • 81. Vasilopoulos D. (1988) On the determination of higher order terms of singular elastic stress fields near corner, Numer. Math., 53, 51–95.
  • 82. Wieghardt K. (1907) Über das spalten und zerreißen elastischer körper, Z. Mathematik und Physik., 55(2), 60–103. (Wieghardt K. On splitting and cracking of elastic bodies, Fat. Fract. Eng. Mater. Struct., 1995, 18, 1371-1405)
  • 83. Williams M. L. (1952) Stress singularities resulting from various boundary conditions in angular corners of plates in extension, J. Appl. Mech., 19(4), 526–530.
  • 84. Yosibash Z., Bussiba A., Gilad I. (2004) Failure criteria for brittle elastic materials, Int. J. Fract., 125(3-4), 307–323.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0044-0018
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.