PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Changes of the yield condition due to accumulation of damage of metal alloys

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The results of the experimental investigations of fatigue damage accumulation and redistribution of residual stresses are reported in this paper. Local measurements of the inelastic response under constant stress amplitude were used to observe two phenomena for selected alloys. It was found that fatigue damage accumulation and redistribution of residual stress affect the yield condition for the investigated materials. Yield condition with damage parameter and the parameter representing residual stress state are proposed. The damage parameter is calculated, basing on the definition given in the author's previous paper. It was also found that the yield condition and damage parameters are different for dynamic (cyclic loading) and for static (for unloaded material) conditions. Physical interpretation for the observed experimental results is given in this paper. Fatigue damage accumulation is divided into three phases: cyclic stabilisation, local increase of crystal defects density, formation and propagation of the crack. Local methods of strain measurements, together with dynamic measurements of damage parameter, were found to be crucial for proper observation of fatigue damage accumulation.
Rocznik
Strony
227--245
Opis fizyczny
Bibliogr. 24 poz., wykr.
Twórcy
autor
  • Materials and Structures Research Centre Institute of Aviation, Warsaw, Poland
Bibliografia
  • 1 A. WOHLER, Versuche iiber die Festigkeit der Eisenbahnwagenachsen, Zeitschrift fur Bauwesen, 1860.
  • 2. A. PALMGREN, Die Lebensdauer von Kugellagem, Verfahrenstcchnik, Berlin, 68, 339-341 1924.
  • 3. M.A. MINER, Cumulative damage in fatigue, Journal of Applied Mechanics, 67, A159-A KM. L945.
  • 4. B.F. LANGER, Fatigue, failure, from stress cycles of varying amplitude, ASME Journal of Applied Mechanics, 59, A 1(H) A 107, 1937.
  • 5. S.M. MARCO, W.L. STARKEY, A concept of fatigue damage, Trans, of ASME, 76, 627-632, L954.
  • 6. I,. YANG, A. FATEMI, Cumulative Fatigue Damage Mechanisms and Quqntifying Parameters: A Literature Review, J. of Testing and Evaluation, 26, 2, 89-100, 1998.
  • 7. L.M. KACHANOV, Introduction to Continuum Damage Mechanics, Martinus Nijhoff, The Netherlands, 1986.
  • 8. S. MURAKAMI, Progress of continuum damage mechanics, JSME Int. J., 30, 701 -TO, 1987.
  • 9. G. SOCHA, Prediction of the Fatigue Life on the Basis of Damage Progress Rate Curves, Int. Journal of Fatigue, 26, 4, 339-347, 2004.
  • 10. G. SOCHA, Experimental investigations of fatigue cracks nucleation, growth and coalescence in structural steel, Int. Journal of Fatigue, 25, 2, 139-147, 2003.
  • 11. G. SOCHA, Influence of Recovery on Plastic Anisotropy of Metals, Engrg. Trans., 45, 2, 181-189, 1997.
  • 12. W. PRAGER, The theory of plasticity: a survey of recent achievements, Proc. Inst. Mech. Engrs., 169, 41, 1955,
  • 13. II. ZIHGLER, A modification of Prager's hardening rule, Quarterly of Applied Mathematics, 17, 1, 1959.
  • 14. W. SZCZEPINSKI, On deformation-induced plastic anisotropy of sheet metals, Arch. Mechn 45, L, 3 38, 1993.
  • 15. A. MENZEL, M. I'.KII. K. RV NESSON and P. STEINMANN, A framework for multiplicative elastoplasticity with kinematic hardening coupled to anisotropic damage, Int. Journ, of Plasticity, 21, 3, 397-434, 2005.
  • 16. G. JOHANSSON, M. EKH and K. RUNESSON, Computational modeling of inelastic large ratcheting strains, Int. Journ. of Plasticity, 21, 5, 955-980, 2005.
  • 17. M. BRUNIG and S. Iticci, Nonlocal continuum theory of anisotropically damaged vu hits, I,ii. Journ. of Plasticity, 21, 7, 1346-1382, 2005.
  • 18. DE-GUANG SHANG, WEI-XING YAO, A nonlinear damage cumulative model for uniaxial fatigue, Int. J. Fatigue, 21, 187-194, 1999.
  • 19. N. BONORA, D. GENTILE, A. PIRONDI and G. NEWAZ, Ductile damage evolution under triaxial state of stress: theory and experiments, Int. Journ. of Plasticity, 21, 5, 955-980, 2005.
  • 20. A. PIRONDI, N. BONORA, D. STEGLICH, W. BROCKS and D. HELLMANN, Simulation of failure under cyclic plastic loading by damage models, Int. Journ. of Plasticity. 22, 11, 2146-2170, 2006.
  • 21. V. MOORTHY, B.K. CHOUDHARY, S. VAIDYANATHAN, T. JAYAKUMAR, K. BHANU SANKARA RAO, BLADEV RAJ, An assessment of low cycle fatigue damage using magnetic Barkhausen emission in 9Cr-lMo ferritic steel, Int. J. Fatigue, 21, 263-269, 1999.
  • 22. G. LA ROSA, A. RISITANO, Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components, Int. J. Fatigue, 22, 65-73, 2000.
  • 23. N.G.H. MEYENDORF, H. ROSNER, V. KRAMB, S. SATHISH, Thermo-acoustic fatigue characterization, Ultrasonics, 40, 427-434, 2002.
  • 24. Y. NAKAI, S. FUKUHARA, K. OHNISJI, Observation of fatigue damage in structural steel by scanning atomic force microscopy, Int. J. Fatigue, 19, 1, S223-S236, 1997.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0040-0003
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.