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Abstract: The stress hypersingular integral equations of axisymmetric elasticity are considered. The singular and hypersin-
gular integrals are regularized using the imposition of auxiliary polynomial solution, and self-regular integral equations are 
obtained for bounded and unbounded domains. The stress-BEM formulation is considered basing on the proposed equations. 
Considered numerical examples show high efficiency of the proposed approach. New problem for inclusion in finite cylinder 
is considered. 

 

1. INTRODUCTION 

The pioneering work concerning regularization of hy-
persingular stress integral equations for the axisymmetric 
elasticity was that by de Lacerda and Wrobel (2001). The 
further researches and a new more convenient solution 
strategy of the hypersingular equations with their previous 
regularization was presented by Mukherjee (2002). The last 
paper also presents practically full review of the major 
works concerning the boundary element method (BEM) 
and the integral equations for the axisymmetric elasticity. 

The main aim of the above mentioned papers was 
the application of hypersingular integral equation as a basic 
one for the numerical scheme of BEM, therefore its regu-
larization is not complete and still there are singular inte-
grals, which principal values are to be evaluated using 
special techniques. Therefore, the regularization ap-
proaches of Mukherjee (2002); de Lacerda and Wrobel 
(2001) are actually unsuitable for calculation of stresses in 
the whole domain continuously up to the boundary, be-
cause of the boundary layer effect, which arise due to the 
numerical integration of nearly-singular integrals (Cruse, 
1969). For this purpose, it is necessary to provide full regu-
larization of both singular and hypersingular integrals. 

2. FORMULATION AND SOLUTION  
   OF THE PROBLEM 

Consider the linear elastic isotropic solid B bounded 
by the surface ∂B. Assume that B is axially symmetric 
and symmetrically loaded with the respect to the axis 
of symmetry Oz. The integral equation for determination 
of stresses in an internal source point B∈ξ , B∉∂ξ  accor-
ding to (de Lacerda and Wrobel, 2001) can be written as: 
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where i, j, k = r, z; σ, t, u are the stress tensor, traction 
and displacement vectors, respectively; α(x)=2πr(x); Γ 
is a curve formed by the intersection of the boundary ∂B 
with an axial plane; r(x) is the distance between point 
x and axis Oz. Kernels Dijk and Sijk are discussed and expli-
citly written in (de Lacerda and Wrobel, 2001). 

When the source point B∈ξ  limits some boundary 
point B∈∂x , that is when ||x – ξ||→0, the kernel function 
D becomes singular of a type O(1/||x – ξ||), and a kernel 
function S hypersingular of a type O(1/||x – ξ||)2 
(de Lacerda and Wrobel, 2001). Thus, when calculating 
stresses or deformations in a point, which is placed close 
enough to the boundary, the integrand in the equation (1) 
will intensively change in the neighborhood of the point 
x=y, where ∈Γy  is the nearest to ξ boundary point. The 
analytical calculation of integral (1) is not affected by this 
behavior of the integrand, so the correct result is obtained 
(the value of stress tensor). Nevertheless, in BEM the inte-
gral (1) is calculated numerically and the intensive varia-
tion of the integrand essentially reduces the accuracy of 
numerical integration. Thus, the boundary layer effect is 
observed: the error of stress or deformation calculations is 
intolerable in the points that are very close to the boundary. 
To eliminate the boundary layer effect, as it was shown for 
the 2D elastic problems in (Richardson and Cruse, 1999), it 
is necessary to use the self-regular boundary integral equa-
tions, so the full regularization is to be provided. 

According to Mukherjee (2000, 2002) when → ∈Γξ y  
the equation (1) can be rewritten as: 



acta mechanica et automatica, vol.3 no.4 (2009) 

 81

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )( ) ( )

,

,

,

  ,

                       .

ij ijk k ijkp k p

ijk kp kp p

ijk k k

k p p p

A u C u

D n d

S u u

u x y d

σ

α σ σ

α
Γ

Γ

+ − =

⎡ ⎤= − Γ −⎣ ⎦

⎡− − −⎣

⎤− − Γ⎦

∫

∫

y y y

x y x x y x x

x y x x y

y x

 (2) 

Here 

( ) ( ) ( )

( ) ( ) ( )

( )( ) ( )

lim , ,

lim ,

                        ,

ijk ijk

ijkp mlkp ijm l

ijk p p

A S d

C E D n

S x d

α

α

ξ

→
Γ

→
Γ

= Γ

⎡= −⎣

⎤− − Γ⎦

∫

∫

ξ y

ξ y

x ξ x x

x ξ x x

ξ x x

 (3) 

are hypersingular and singular integrals respectively  
(according to the definition of (Mukherjee, 2000; Lin’kov 
1999); the components of tensor E are defined by the  
expression σij=Eijkmuk,m. Integrals in the right hand side 
of (2), according to Mukherjee (2000) and Lin’kov (1999), 
are regular. The presented in (Mukherjee, 2002; de Lacerda 
and Wrobel, 2001) approaches are engaged in calculation 
of integrals (3). 

To withdraw the evaluation of singular and hypersingu-
lar integrals another regularization approach for equation 
(1) should be used. If such auxiliary solution of axisymme-
tric elasticity can be found that its superposition with (1) 
gives zero values of uk(y) and uk,p(y in boundary point y, 
then in expression (2) the terms with tensors Aijk and Cijkp 
vanishes. Moreover, when the source point ξ is located 
close to ∈Γy , such representation, according to (Richard-
son and Cruse, 1999), will eliminate the boundary layer 
effect. 

The auxiliary solution u*( ξ, y) must satisfy the partial 
differential equations of the problem (e.g. see Timošenko, 
1972) 

2

2

2 2

2 2

1 0;
1 2

1 1 0,
1 2

r z r r r r

r z r z z z

u u u u u u
r r z r r r rz

u u u u u u
z r z r r rz r

ν

ν

∂ ∂ ∂ ∂∂ ∂⎛ ⎞ ⎛ ⎞+ + + + + =⎜ ⎟ ⎜ ⎟− ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠∂

∂ ∂ ∂ ∂ ∂∂ ⎛ ⎞+ + + + + =⎜ ⎟− ∂ ∂ ∂ ∂⎝ ⎠ ∂ ∂

 (4) 

and the displacements u*
i  along with their partial deriva-

tives u*
i,k in a point y  are to be equal to the corresponding 

values of the considered problem (1). The simplest way 
to obtain this auxiliary solution is to use the polynomial 
one. It is easy to verify by direct substitution, that the dis-
placement field with the following structure 
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satisfies the partial differential equations (4) and conse-
quently can be used as an elementary solution for imposi-

tion. Here v is a Poisson ratio. 
The factors Ck can be determined using the mentioned 

above conditions: 
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By substitution of equations (5) in (6) and solution 
of the resulting system of linear algebraic equations,  
the explicit expressions for the factors Ck can be obtained: 
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where r=r(y), z=z(y), ui= ui (y), ui,j= ui,j (y), α=1-2v, β=1-v. 
It should be mentioned that conditions (6) are insuffi-

cient for determination of Ck, when the regularization point 
y is placed on the axis of symmetry Oz. In this case, taking 
into account that for r=0 nonzero are only uz, uz,z, ur,r, 
the factors Ck can be defined as follows: 
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This choice satisfies conditions (6) with the reference 
that the regularization point y is placed on the symmetry 
axis Oz. 

In terms of (1), the stresses, which are induced by the 
elastic displacements (5), equal 
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Subtracting equation (9) from (1), the following stress 
integral equation is obtained: 
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Considering (6) and the Hook’s law it follows that  
tk(y)–tk

*(y)=0. Also from (6) it directly follows that  
uk(y)–uk

*(y)=0 and uk,p(y)–uk,p
*(y)=0. Thus the representa-

tion (10), according to (Mukherjee, 2000; Lin’kov, 1999), 
completely regularize singular and hypersingular integrals 
which arise in (1) when the source point B∈ξ  limits point 
y on boundary ∂B. Besides, the self-regular integral equa-
tion (10) makes it possible to eliminate the boundary layer 
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effect and to calculate stresses extremely close to the 
boundary of a solid and even on it. Equation (10) can be 
also used as the basic integral equation for the numerical 
scheme of BEM to solve the axisymmetric elastic problems, 
including those of fracture mechanics. Full regularization 
(10) permits to avoid thus calculation of the principal value 
integrals that is necessary to do using those BEM schemes 
of (Mukherjee, 2002; de Lacerda and Wrobel, 2001). 

As for the infinite medium, the integral representation 
of stress tensor components (10) cannot be applied and 
should be slightly modified. Assume that a solid is bounded 
with the surface RΣΓ = Γ Γ∪ , where Γ is a boundary 
of voids and ΓR is a sphere of a radius R. Integration of (10) 
over the surface ΓΣ and the limiting procedure when 
R →∞  gives 
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where σij
hom(ξ) is a homogenous solution of the problem 

for the infinite medium without voids. That is the problem 
is reduced to the analysis of the perturbation influence 
of voids, which are bounded domains. 

3. STRESS BEM FORMULATION 

Integral equations (10) and (11) due to the applied regu-
larization technique are continuous to the boundary. 
Though the limit procedure of → ∈Γξ y  can be done by 
simple substitution. Taking into account that for the regu-
larization point y according to (6) and Hook’s law 
σ(y)=σ*(y) the following integral equations are obtained 
from (10) for bounded domains 
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and from (11) for unbounded domains 
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For the solution of equations (12) or (13) the standard 
BEM procedure (see Richardson and Cruse, 1999) is ap-
plied. Unknown derivatives of displacements ui,j are ob-
tained using Hook’s law from the following system of 
equations 
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where G is shear modulus; ni(η) are the components of unit 
normal vector to the boundary element; η is a boundary 
element parameter; J(η) is a Jacobian of the considered 
boundary element. Derivatives ui,η are obtained directly 
from the used approximation, e.g. if displacements on the 
element are given as 
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where ( )pN η  are base functions. 
All the rest of BEM procedure is standard (see Richard-

son and Cruse, 1999). 

4. NUMERICAL EXAMPLES 

To demonstrate the efficiency of the proposed regulari-
zation technique for calculation of the stress field let us 
consider numerical examples for the unbounded and 
bounded domains. 

As an example of the unbounded domain consider 
the perturbation of the stress field by the spherical cavity 
of the radius R in the infinite elastic isotropic medium that 
is loaded on infinity by the homogeneous stresses q acting 
along axis Oz. According to (Barber, 2004) the maximum 
stresses on the boundary of the cavity for such loading 
equal 

( )
27 15
2 7 5zz qνσ

ν
−

=
−

.  

For the BEM model of this problem 5 quadratic isopara-
metric boundary elements are used. The boundary nodes 
are uniformly distributed. The relative error of σzz determi-
nation by the equation (11) on the boundary of the cavity at 
a point (r=R, z=0) is less, than 0.2 %. At the same time the 
ordinary stress equation (1) gives a considerable error even 
far enough from the boundary of a cavity. Fig. 1 shows 
the values of stress tensor component σzz(ξ) on the axis Or, 
when x=r(ξ) comes close to R. 
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It can be seen from Fig. 1, that ordinary stress equation 
(1) gives good results only for the points that are far 
enough from the boundary. When the source point ap-
proaches the boundary, due to the calculation errors, the 
solution begins to oscillate, and the received values can 
differ from the true one even in ten times. The regularized 
equation (11) gives good values in the whole domain. The 
continuous curve on the plot practically coincides with the 
analytical solution of the problem (Barber, 2004) (it is not 
possible to distinguish these results on the plot). 

 
 

Fig. 1. Determination of stress field near the spherical cavity 
using 
           the regularized and ordinary stress integral equations 

As an example of a problem with the bounded domain, 
consider the Lame problem. Its solution can be found, 
for example, in (Timošenko, 1972). For numerical solution 
the following parameters are used: the ration of internal 
and external pressure is p1/p2=0,5; the ratio of internal 
and external radius is R1/R2=0,6. For the axisymmetric 
BEM model the length of a pipe was equal 4 R2. The maxi-
mum relative error of the hoop stresses σθθ determination 
using the self-regular equation (10) is less than 0.8 %.  
Corresponding plots of change of these stresses with 
the thickness of the pipe received by equations (1), (10) 
and analytical solution (Timošenko, 1972) are shown 
on Fig. 2. 

It can be noticed (Fig. 2), that the hoop stress σθθ re-
ceived using the ordinary stress equation (1) more than 
in 100 times differs from the true one. The curves received 
by the formula (10) and analytical solution of the problem 
practically coincide. 

Now consider a new problem for a finite cylinder with 
an ellipsoidal elastic inclusion. It is well known that if the 
ellipsoidal inclusion is bonded into infinite medium the 
stress field in it is constant (Eshelby, 1957). It is interesting 
to obtain the influence of cylinder size on the stress field in 
inclusion and to obtain the size, for which this field is 
nearly constant. 

Consider the cylinder of a radius R and heights 2R.  
In the center of cylinder the ellipsoidal inclusion of length 
a  and heights b is placed (a/b=10). The Poisson ratios  
of cylinder and inclusion are equal 0.3. The ratio  

of Young’s modulus of inclusion and cylinder is denoted 
by k . The relative size of inclusion is a Rλ = . The 
scheme  
of the problem and stress deviations 

( ) ( ) ( )0 0 100%ij ij ij ijδσ σ λ σ σ⎡ ⎤= − ⋅⎣ ⎦   

are plotted in Fig. 3. Hear σij(0) are the stresses for inclu-
sion in infinite medium (Eshelby, 1957). 

 
 

Fig. 2. The BEM and analytical solution of the Lame problem 

Stress deviations at the center O  of inclusion are de-
noted by continuous curves, at the point A  by dashed 
curves, and at point B  by dash-dot. It can be seen that for 
the inclusion in cylinder stresses at its center are little 
greater than those on the surface. The influence of size  
is greater for soft inclusions ( 1k < ). Fig. 3 shows that with 
an error of 10 % the solution (Eshelby, 1957) for the infi-
nite medium can be applied to the problem of finite cylin-
der if the relative size of inclusion is less than 0.4. If the 
error should be less than 5 % then 0.2λ < , less than  
1 % – 0.1λ < . 
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Fig. 3. Stress deviation in inclusion inside the cylinder 

5. CONCLUSION 

The ordinary hypersingular integral equations of axi-
symmetric elasticity actually do not suite when the stress 
field is determined close enough to the boundary of a solid. 
Due to the numerical integration of nearly-singular inte-
grals, which are crucial for the accuracy, the computational 
error of ordinary equations is intolerable and the received 
values are in tens to hundreds times greater, than the true 
ones. So, instead of ordinary one the self-regular integral 
equations are to be used. Using the polynomial solution 
of the partial differential equations of the problem both 
singular and hypersingular integrals can be regularized 
and self-regular integral equations are received for both 
bounded and unbounded domains. These equations are 
utilized in the new self-regular stress BEM formulation. 
The numerical procedure of this BEM has much in com-
mon with one for 2D elasticity. The peculiarities of the new 
BEM are discussed separately. Presented numerical exam-
ples show high efficiency of the proposed integral equa-
tions. New results are obtained for the problem of ellipsoi-
dal inclusion in cylinder. 
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