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Abstract: The model of acoustic emission caused by formation of penny-shaped cracks in fiber composite materials taking 
into account stress relaxation in breaking fibers is proposed. It is found that the maximal values of components of displace-
ment vector are directly proportional to the total area of defect, which is formed, and inverse proportional to the relaxation 
time. 

1. INTRODUCTION 

Construction of new high-strength fibers with low spe-
cific weight induced many researchers to put the efforts  
at the development of new criteria for evaluation of fracture 
of composite materials (CM) (Skalsky, 1997). Fiber com-
posites unlike homogeneous structural materials consist of 
two or more phases of different shape. Main of them are a 
high-strength, brittle phase forming thin fibers and low-
strength more plastic phase, a matrix, which fills a space 
between fibers and tightly bounds with them. Choosing the 
orientation of fibers and combining their types with various 
materials of matrix allows manufacturing CM with the best 
strength and elastic properties. 

In contemporary engineering, investigating fracture pro-
cesses a method of acoustic emission (АЕ) (Lipovetskii  
and Bondarenko, 1983) is frequently used, because it is 
considered as one of most perspective in this area (Kishi, 
1975; Frydman et al., 1975; Nadolinnyy, 1984). The mo-
ment of fracture of CM fiber is accompanied by sharp  
growth of amplitudes of АЕ signals. Usually strain-gauge 
testing and visual examination of the damaged CM ele-
ments do not allow identifying this process, while the АЕ 
method enables to detect early stages of fibers fracture 
without any outward indication of damages in CM. 

2. MODEL OF АЕ DIAGNOSTICS OF PENNY-SHAPED 
   CRACK FORMATION IN FIBER COMPOSITES 

Let us consider the element of a fiber composite  
(Fig. 1a) with forming the mode I penny-shaped crack 
under load applied in the direction of the fiber orientation 
(Fig. 1b). 
 

   
Fig. 1. CM element with a penny-shaped crack in a fiber (а), 
           scheme of this crack (b) 

The dynamic displacement field in an elastic body can 
be found from the equation of motion  
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where u(x, y, z, t) is the displacement vector, λ and μ are 
the Lame constants, ρ is the density of material, Δ is the 
Laplace operator. Boundary conditions, which correspond 
to formation of the penny-shaped crack, in the cylindrical 
coordinate system Orϕz with the center О coinciding with 
the center of the crack and the Oz axis perpendicular to the 
crack plane can be written as follows (Andreykiv et al., 
1987): 

( ) ( ) ( ) 00 ,,0, rrtHtftrzz <σ−=σ , 

( ) 0,0,0, rrtruz ≥= ,      (2) 

( ) ∞<<=τ rtrrz 0,0,0, . 

Here σzz and τrz are the components of stress tensor,  
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H(t) is the Heavyside function, r0 is the radius of a penny-
shaped crack (a fiber radius), σ0 is the critical stress,  
at which a fiber brakes, the function f(t) describes time 
relaxation of stress at the crack surfaces due to relaxation 
processes (with characteristic time τr) in plastic matrix. 
Initial conditions are to be zero 

( ) ( ) 0,,,,,, == tzyxutzyxu .     (3) 

Solution of the formulated dynamic problem (1) – (3) 
we find as follows. 

Firstly we consider an auxiliary problem, which differs 
from the formulated above by that f(t)≡1 (instantaneous 
formation of a penny-shaped crack). The solution for dis-
placements of this auxiliary problem we found previously 
(Andreykiv, 1987; Andreykiv and Lysak, 1989). Its asymp-
totes in the spherical coordinate system ORθϕ have  
the form: 
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where i=R, θ; 01 rtcT= ; ReT ii −=τ ; (min)(min) ReT ii −=τ ; 

0rRR = ; (min)R  is the least distance from the crack  
region to the view point; e=c2/c1; e1=e, e2=1; с1 and с2  
are the velocities of longitudinal and transverse waves, 
respectively; M1(k)=K(k); M2(k)=2E(k)-K(k); k=q/2Rcosθ; 
b(q) and m(q) are the approximation functions written  
in Andreykiv (1987), Andreykiv and Lysak (1989); К(k) 
and E(k) are the complete elliptic integrals of the first and 
second kind, respectively; J0(.) is the Bessel function of the 
first kind of zero order; functions B1(θ)=e/π(1-2e2cos2θ) 
and B2(θ)=1/πsin2θ determine angular dependence of radia-
tion for modeling a crack by the system of three mutually 
perpendicular dipoles (Wadley and Scruby, 1983). 

By using the method of Laplace integral transforms we 
obtained the solution of dynamic problem (1) - (3) for gen-
eral case f(t)≠1 in the form 
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where the indexes L and T correspond to the components  
of longitudinal and transverse waves, respectively; 

( )sxu ,)0(  is the solution of the auxiliary problem on instan-
taneous (f(t)≡1) penny-shaped crack formation. 

Computation of the displacement vector components  
in the spherical coordinate system we conducted for 
ν=0,28, c2/c1=0,535, where ν is the Poisson’s ratio. The 
function  
of stress relaxation at the surfaces of the crack was chosen 
in the form proposed in Kaplitskii et al. (1984): 

( ) ( )rttf τ−−= exp1 ,       (6) 

where characteristic relaxation time τr ≥ r0/c1. In the case, 
when f(t) has the form of equation (6), the dependence (5) 
takes the form: 

( )
( )

( ),)()()()()(2

exp1),,(

2(min)
1

0
0

min

−

τ

+τ
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

τ×

×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ τ−
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
θ=θ

∫

∫

ROHdqkMmJqmqqb

T
T

TR
ABTRu

iii

T

r

i

r
ii

i  (7) 

where i=R, θ; 01 rcT rr τ= . 
The example of computation of the dimensionless com-

ponents uR(R, θ, T)/A of the displacement vector against the 
dimensionless time T for dimensionless distance between 
the crack center and the view point, according to equation 
(7), is shown in Fig. 2, for 20=R  (a) and 500=R  (b), 
respectively, the angle between direction to the view point 
and the crack plain θ=30о. The curves 1 correspond to the 
case of instantaneous penny-shaped formation (f(t)≡1),  
and the curves 2 are calculated for Tr=1.  

It is obvious from Fig.2 that accounting the stress re-
laxation at surfaces of the crack results in decreasing  
of maximal values of the displacement vector component 
and increasing of the width of first maximum of oscillation. 
In general, the obtained dependences, taking into account 
the stress relaxation, have more smooth character in com-
parison with the case of instantaneous penny-shaped crack 
formation. 

 
                         a)                                                   b) 
Fig. 2. Dependence of dimensionless component uR(R, θ, T)/A  
            of the displacement vector on the dimensionless time T  
            for θ=30о 20=R  (а) and 500=R  (b): 1 – with stress 
            relaxation, 2 – without stress relaxation 

The conducted calculations have shown that this ten-
dency remains valid, namely, the maximal values of com-
ponents of displacement vector continue decreasing and the 
width of the first maximum grows with increasing of re-
laxation time Tr. 

Analysis of calculations results, conducted according  
to dependence (7) has shown that for the maximal values  
of components uR(R, θ, T) and uθ(R, θ, T) of displacement 
vector, which correspond to propagation of longitudinal 
and transverse waves, respectively, the following approxi-
mation formulas characterizing the angular distributing of 
radiation of elastic waves for formation of penny-shaped 
crack (R>>r0) are valid: 
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For the longitudinal wave 
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Here parameters χ1 and χ2 are equal 0,21 and 2,18, re-
spectively. Their numerical values are obtained with the 
least-squares method by comparison of formulas (8) and (9) 
with the maximal values of components of the displacement 
vector calculated from dependence (7). The dependences 
(8) and (9) have similar form to those ones obtained previ-
ously for the case of instantaneous formation of mode I 
penny-shaped crack (Andreykiv et al., 2001). However, 
numerical values of the parameters of approximation χ1 and 
χ2 an in this case (with the accounting stress relaxation) 
differ from the obtained in Skalsky (1997), χ1=0,68  
and χ2=2,69. Note that in general different relaxation times 
Tr correspond to different values of approximation parame-
ters χ1 and χ2. Their numerical values can be found in each 
case by the least-squares method comparing the exact val-
ues obtained from the dependence (7) with the approxima-
tion formulas (8) and (9).  

By using the dependences (8) and (9) and analyzing  
the component of the dynamic displacement field obtained 
from the equation (7) the following approximation formulas 
for estimation of maximal values of components uR(R, θ, T) 
and uθ(R, θ, T) of the displacement vector are obtained: 
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where αi are the numerical factors for longitudinal (i=1) 
and transverse (i=2) waves, respectively; α1=0,37, and 
α2=0,63. 

Approximation dependence (10) differs from obtained 
previously (Andreykiv et al., 2001) for the case of instanta-
neous formation of penny-shaped crack by the relaxation 
time Tr in the denominator, by other numerical values of αi 
and by the functions ( )( )θΦ τr

i , which determine the angular 
distributing of radiation, depend on the parameter Tr.  
In general, the shape of these functions is smoother in com-
parison with the case of instantaneous formation of a 
penny-shaped crack. The multiplier r0

2 proportional to the 
crack area in the numerator of dependence (10) is relevant 
for both cases (instantaneous crack formation and crack 
formation with accounting the relaxation time). This cir-
cumstance allows considering that the product umax|c1R does 
not depends on distance between the view point and the crack  
and is proportional to the area S of the formed defect. 

3. FORMATION OF CRACK SYSTEM 

Now we consider formation of two cracks in CM. Let  

in certain moment of time considering as initial two penny-
shaped cracks have formed in this body as a result of local 
loss of strength. They have the identical radiuses r0 and 
located in parallel planes, which are perpendicular to direc-
tion of applied load. Suppose that the distance between 
their centers, 2d, be sufficiently large so that one can ne-
glect  
an interference of the stress states caused by these cracks  
in static case. In such case we can consider these cracks  
as independent. Therefore the displacement field caused  
by formation of two penny-shaped cracks can be obtained 
by superposition of two displacement fields caused by 
isolated cracks described by equation (7). Then the ob-
tained solution of the problem is valid until the wave emit-
ted  
by one crack arrive the view point reflecting by other crack. 

Let us introduce the system of Cartesian coordinates 
Oxyz. The center of this system is located arbitrarily and the 
plane xOy is parallel to the planes of cracks location (see 
Fig. 3). For each crack we introduce also the system of 
local Cartesian coordinates О(i)x(i)y(i)z(i), where i=1, 2 for the 
left and right crack, respectively. The axes О(i)z(i) are 
parallel to Oz. Lets locations of the centers О(i) of these 
coordinate systems are defined by the vectors )(

0
iR  and 

location of the view point is defined by the vectors )(iR . 

 
Fig. 3. Arrangement of two penny-shaped cracks 

In this case )(
0

)( ii RRR −=  and components ux
(i) and 

uy
(i) of the displacement vector in local Cartesian coordinate 

system takes the form 
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The components ur
(i)and uz

(i) are determined by the 
dependence (7) written in the cylinder coordinate system. 
The components ux, uy, uz of the displacement vector of the 
total field we represent as follows: 

)2()1(
xxx uuu += , )2()1(
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zzz uuu += .        (12) 

Numerical calculations we conducted for the system 
of two penny-shaped cracks located in one plane,  
the distance between crack centers 2d=10r0.  

Spectral characteristics of these displacements were cal-
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culated by the method of the fast Fourier transform (Ahmed 
and Rao, 1975). They are more oscillating in comparison 
with the case of formation of one crack.  

The directivity of emission for a longitudinal wave we 
investigated calculating maximum of the module of the 
displacement vector depending on the angles of view ϕ and 
θ for R>>d. As a result we found that the angular 
distribution of emission is not axisymmetric as it was 
observed in the case of formation of one penny-shaped 
crack. It is clear that the diagram of directivity is most 
deformed in the plane perpendicular to the line, which 
connects the centers of defects, i.e. at ϕ=π/2 and least 
deformed at ϕ=0о in comparison with the case of one crack. 
The mentioned circumstance might substantially complicate 
determination of space orientation and dimensions  
of defects. Note that in this case it is also not easy to find 
their location. It is conditioned by the fact that one sensor 
used for the crack location can detect firstly the signal 
emitted by one defect, but at the same time other sensor can 
detect firstly the signal emitted by other defect.  

In general, in the case of formation (not simultaneous) 
of the system of L cracks under limitations, which are dis-
cussed above, the components of the displacement vector 
can be written in the form: 
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where T0
(l) is the moment of l-th crack formation, R(l), θ(l) 

are the components of the local spherical coordinate sys-
tem. Its center coincides with the center of l-th crack. 

Substitution of equation (7) into expression (13) with 
taking into account equations (8) – (10) yields the depen-
dence that connects the peak values of the АЕ signals, 
which we consider to be proportional to the maximal values 
of the components of the displacement vector, and the sum 
of formed cracks areas. 
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where Ri are the distances between the centers of the cracks 
and the view point, β is the proportionality factor that has  
to be determined experimentally. 

The formula (14) can be simplified assuming that the 
linear dimension Δ of the region Λ, where the cracks form, 
is such that the condition Δ<<Ri is held. In this case all 
Ri≈Rs, where Rs is the distance from the center of region Λ 
to the view point. Then dependence (14) then takes the 
form 

/i r i
i i

A b T S=∑ ∑ ,             (15) 

where b is the proportionality factor to be determined  
experimentally. 

4. CONCLUSIONS 

Linear dependence between the maximum values  

of the components of displacement vector and the total area 
of the cracks, which are formed, and inverse proportional 
dependence of these maximal values and the relaxation time 
are found. 

Angular distributing of the AE amplitudes during simul-
taneous formation of two penny-shaped cracks is not axi-
symmetric as it was observed in the case of one crack for-
mation. In comparison with the case of one crack forma-
tion, the diagram of directivity differs mostly in the plane 
perpendicular to the line connecting the centers of defects, 
thereby substantially complicating determination of spatial 
orientation and dimension of the defects. 

In general case of a system of cracks formation the sum 
of AE amplitudes is proportional to the sum of crack areas. 
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