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Abstract: This paper presents an approach to describe a dynamic behaviour of  magnetorheological damper by the Bodner-
Partom constitutive law. The B-P equations usually used for metals are presented for shear stresses to express viscoplastic 
proprieties of MR fluid. Material parameters for the B-P law for fluid in the LORD RD 1005-3 damper are determined. Ex-
perimental results are compared with numerical results. 

 

1. INTRODUCTION  

Magnetorheological (MR) fluids like electrorheological 
(ER) fluids are a kind of smart material whose rheological 
properties may be rapidly varied by application of a mag-
netic field. This material typically consists of micron-sized 
ferrous particles dispersed in a fluid. When MR fluid  
is exposed to a magnetic field, the liquid state may be chan-
ged to semi-liquid or extremely to a solid state. When the 
magnetic field is removed, the state may recover to liquid. 
The speed of changes of rheological properties are an order 
of milliseconds. Controlled by computer and modern con-
trol methods, magnetorheological fluid can be used in all 
kinds of dampers (Carlton and Jolly, 2000; Spencer et al., 
1996). Dampers with MR fluids may offer an improved 
control of vibrations in airplanes upon landing, and in cars, 
mechanical devices, and industrial machinery.  

The main aim of this paper is to present a preliminary 
approach to parameters identification of the B-P law  
for fluid in the MR damper. The Bodner-Partom equations 
(Boder et al., 1979) usually used for metals are presented 
for shear stresses to express the viscoplastic proprieties  
of MR fluid. 

2. EXPERIMENTS  

Experiments have been conducted at a vertical stand  
for MR dampers with the forced kinematical movement,  
at Warsaw University of Technology. Installed sensors 
allowed to measure and record values of damping forces, 
and displacement of the piston rod during movement.  
The scheme of the stand was described in Bajkowski 
(2005) and is neglected here.  

The research schedule included series of tests with one 
value of current I=1A with the different speed of forced 
kinematic movements n1=100rpm, n2=200rpm, n3=400rpm. 

All experiments were carried out with the Rheonetic  
RD 1005-3 damper from Lord Corporation (Jimenez  
and Alvarez-Icaza, 2005).  

3. MODEL AND PARAMETERS IDENTIFICATION 

Results of  the test for three different shear rates  
are the basis for the determination of parameters. During 
tests, values of displacements x, force F, and time t were 
recorded. Afterwards, the shear stress τ, the shear strain 
strain γ, the inelastic shear strain γI and the inelastic shear 
rate Iγ  can be calculated respectively: 
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where A and h stand for the working interface area  
and the gap size, and G is the shear modulus. Fig. 1 pre-
sents the shear strain-shear stress relation for three different 
shear rates. These relations served for the identification of 
the Bodner-Partom model.  

In this case of neglecting the recovery effects, the con-
stitutive formulation of Bodner-Partom can be expressed  
in the following form (Woźnica et al., 2001):  
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where R represents the isotropic hardening, D is the fun-
ction associated to the kinematic hardening. The parameter 
D0, that designates the maximal value of the shear rate, can 
be chosen arbitrarily. In almost static problems, one admits 
D0=104s-1 (Chan et al., 1998). D1, R0, R1, m1, m2, n are the 
parameters to be identified and I IW = τγ is the inelastic 
work rate. The relation (3) can be written as a functional 
relationship between the shear stress, the inelastic shear rate 
and the hardening variables,  
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Fig. 1. Shear stress as a shear strain function-experimental data  
            for  three different shear rates 

The identification of n and R0 parameters can be carried 
out from Eqs. (5), expressed for small values of inelastic 
shear strain (e.g., γI=0,2%), for several different shear rates. 
When the material enters in the plastic domain, one can 
consider that the isotropic hardening is equal to its initial 
value R=R0, and the kinematic hardening is negligible.  
The initial yield stress function of the shear rates is written 
according to (3):   
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Having several values of τ02 for different shear rates, the 
diagram ( )I

02τ γ  can be drawn (Fig. 2) and by the least 
squares method non linear regression, n and R0 values can 
be determined. 

Subsequently, the inelastic shear strain γI, Eq. (1),  
is calculated to construct the curve τ(γI) for every test,  
and this curve can be approximated by the multi parameter 
exponential function (Fig. 3): 

( ) ( )I I= exp +
b
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where coefficients a, b, c and d can be determined by the 
Marquardt-Levenberg regression. It permits of the deriva-
tive: 
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which is used to draw the function of the work hardening 
rate ψ, Fig. 5: 
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Taking into account formulas (3-6), the hardening work 
rate function (9) can be written in the following form: 
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Supposing for the small inelastic shear strains R=R0 
(Border et al., 1979), and using (3) and (6), formula (10) 
becomes: 
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Fig. 2. Conventional yield limit for the B-P model as a function  
           of strain rate 
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Fig. 3. Shear stress-inelastic shear strain plot, and a numerical 
           approximation 

( )0
1 1 0 2 0 1 2

0

= - + ( + ) - .m R R m R D m
R
τ

ψ τ⎡ ⎤⎣ ⎦                 (11) 

The expression (11) shows that, for small inelastic shear 
strains, the graph ψ (τ)  must be linear with a slope m2. 
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For the larger shear strains, the kinematic hardening  
is rapidly saturated, so D≈D1. Equations (3), (6), (10) then 
give:  
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The formula (12) indicates that for higher shear strains, 
the function ψ(τ) becomes linear again with a slope 1m .  

To determine parameters m1 and m2, it is sufficient  
to calculate two slopes on both extremities of the curve ψ(τ) 
(Fig. 5) and according to (11), (12) the values of ψs and τs 
can be found: 
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Equations (13) permit parameters D1 and R1 to be ob-
tained. In the next part of this work we present the numeri-
cal solutions for obtained parameters. 

4. NUMERICAL SOLUTION 
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Fig. 4. Comparison of the experimental data and obtained results 

from numerical solutions by the Bodner-Partom law,  
for three different shear strain rates: 

1 1 1
s s s= 45 , = 87 , = 176γ γ γ  

Relations of shear strain-shear stress for three differ-
rent shear rates (Fig.1) served for the identification  
of the Bodner-Partom model. Received parameters were 
used to numerical simulation. The calculation was made  
in the Excel program. The Euler’s method was used to 
solve the equation (3). Numerically obtained results are 
compared with the experimental data for three different 
values  
of the shear strain rate. We observe a good concordance 
between the experimental data with the numerical solution 
of Bodner-Partom model (Fig. 4). 

5. CONCLUSIONS 

In this paper, the constutive equations of the Bodner-
Partom model are used for magnetorheological fluid  
in the damper. Conducted experiments on the Lord RD 
1005-3 damper served for the identification of parameters 
of the B-P law. Experiments and the numerical results  
for three different values of  shear strain rate validate  
the B-P model. The numerical model shows a good level  
of accuracy between the experimental and calculated data.  
It shows that the Bodner-Partom law, first allocated  
for metals, permits to describe the behaviour of  magneto-
rheological fluid in the damper.  

More research is being conducted in order to improve 
the model behaviour, especially to accommodate the values 
of current in a coil.  
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