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Abstract: Coordinate measurements are a source of digital data in the form of coordinates of measurement points with a di-
screte distribution on the measured surface. Geometric deviations of free-form surfaces are determined at each point as nor-
mal deviations of these points from the nominal surface (a CAD model). The calculations are preceded by fitting the measu-
rement data to the CAD model. The relations between the object coordinate system and the coordinate system of the machine 
are described by the transformation parameters. This paper presents the idea of the process of data fitting with the use of the 
least square algorithm method as well as the way of determining the uncertainty on the assumption that transformation para-
meters are subject to a multivariate normal probability distribution. The theoretical issues were verified by experiments  
carried out on a free-form surface obtained in the milling process and characterised by random geometric deviations. 

1. INTRODUCTION  

Computer-aided measurement techniques tend to domi-
nate in measuring geometric dimensions connected with 
machine parts. These techniques involve determining  
the coordinate values of measurement points situated (using 
a touch or non-touch system) on the object surface. As the 
result of the measurement, a set of discrete data is obtained. 
From the point of view of CAD/CAM techniques, the most 
important feature of coordinate measurements is providing 
data concerning the object in the digital form. 

A typical machine part geometry is described with sim-
ple geometric shapes: straight lines, planes, circles, cylin-
ders, etc. In coordinate measurements, macroinstructions 
built in software are used; on the basis of the coordinates  
of measurement points, first geometric associated features, 
and later their dimensions and shape and location devia-
tions, are determined. The accuracy inspection is reduced  
to comparing the determined dimensions with the data 
contained in construction drawings. 

Growing demands concerning product functionality,  
ergonomics, and aesthetics, force creating machine parts 
composed of 3D curvilinear surfaces. Such parts are shaped 
by surfaces which cannot be described with simple mathe-
matical equations. The accuracy inspection involves digita-
lising the measured object (coordinate measuring with  
the use of the scanning method) and later comparing  
the ob-tained measurement points coordinates to the CAD 
design (model). At each measurement point, geometric 
deviations, or the distances of these points from their pro-
jections on the nominal surface, are determined. The pro-
cessing accuracy inspection results may be presented in the 
form of a three-dimensional plot or a deviation map. 

The majority of problems in the coordinate measure-
ment technique theory results from the discrete character  

of measurement data. These problems might be divided into 
two categories: 
− different calculation algorithms produce different me-

asurement results for the same set of data;  
− different sampling strategies (number and location  

of measurement points) provide different measurement 
results for the same surface regardless of applying  
the same calculation method. 
The latter problem category is connected to the fact  

of measuring a finite number of discrete points on the mea-
sured surface described actually with an infinite number  
of points. Since geometric deviations are different at each 
point, measurement results depend on the number and loca-
tion of these points. For the same reason, the number  
and location of points influence determining geometric 
features which form the basis of the object coordinate sys-
tem (Feng et al., 2007; Dhanish and Mathew, 2006; Yau, 
1998; Rajamohan et al., 2007). The surface geometric de-
viations variability is therefore the source of uncertainty  
in determining the object coordinate system. Consequently, 
the values of measurement points coordinates determined  
in this system (and thus the values of geometric deviations) 
are also characterised by this uncertainty. 

Before determining geometric deviations of regular sur-
faces it is necessary to determine an associated feature from 
the obtained data. In measuring such surfaces composed  
of typical geometric features (circles, cylinders, cones, 
etc.), one of the four methods of determining associated 
features might be applied (Ratajczyk, 2005). However, it is 
not possible to determine nominal shapes of curves and 
free-form surfaces out of measurement data. Processing  
and measuring these types of surfaces are performed  
on numerical control devices, using the information  
on nominal shapes, included in the imported CAD model,  
to create controlling programmes. For the above mentioned 
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reasons, software of coordinate measurement machines 
best-fits obtained data to the nominal surface (CAD model), 
and the least square method is the most often used method 
here (Yau and Menq, 1996). The idea of this process  
is described in Chapter 2.  
 This paper presents the idea of determining the limits  
of the uncertainty of the coordinate system location  
of a object determined in the process of fitting data  
to the nominal surface with the least square method.  
The experiments were performed on a free-form surface 
characterised by random geometric deviations.  

The experiments were carried out with the use  
of a MISTRAL STANDARD 070705 coordinate measuring 
machine equipped with a Renishaw TP200 touch trigger 
probe with a stylus of 20mm in length, with a ball tip  
of 2mm in diameter, MPEE=2,5+L/250. 

2. IDEA OF FITTING MEASUREMENT DATA 

An ideal (nominal) shape of a surface part might be de-
scribed with the N(p) shape function, where p is the set  
of parameters describing the surface. After the object has 
been made, its real shape might be described as follows: 

)()()( ppNpM ε+=                                                         (1) 

where: M(p) – the real shape of a surface part, ε(p) – geo-
metric deviations. 

In coordinate measurements, the coordinates of mea-
surement points are determined on the real surface  
in the machine coordinate system. The determined coordi-
nates of the i-th point on the M(p) surface might be de-
scribed as follows: 

iii epMtTX += )()(                                                         (2) 

where: T(t) – transformation matrix between the object 
coordinate system and the machine coordinate system,  
t – transformation, rotation and translation parameters,  
ei – measurement error. 

If the measurement errors are small when compared  
to the geometric deviations of the measured object surface, 
the geometric deviation at each measurement point might  
be calculated from the following dependence (3): 

)()()( pNtTXt iii −=ε                                                 (3) 

where: εi(t) – geometric deviations in the machine coordi-
nate system, Ni(p) – the Xi measurement point projection on 
the N(p) nominal surface in the machine coordinate system. 
 As it was already mentioned, in measurements per-
formed in the CAD environment, best-fit algorithms  
of coordinate measuring machines software carry out the 
operation of fitting the measurement data to the nominal 
surface (CAD model), or:  

)()()( 1 pNXtTp iii −= −ε                                                (4) 

where: T-1(t)Xi – measurement point coordinates in the  
object system, Ni(p) – the T –1(t)Xi transformed point pro-
jection on the nominal surface, εi(p) – geometric deviation  
at the measurement point, determined in the object coordi-

nate system. 
Before determining geometric deviations it is necessary 

to establish the transformation matrix which is a function  
of a three-dimensional rotation and translation (Kiciak, 
2000; Yau and Menq, 1996). When applying the least 
square method to data fitting, the following function F 
should be minimised:  
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where: m – the number of measurement points. 
The fitting effect depends on each of the points selected 

to establish the transformation matrix. Because of the pre-
sence of geometric deviations at each point, different num-
bers and locations of points result in different fitting effects 
and thus different locations of the object coordinate system, 
which means they influence the relations between the ob-
ject coordinate system and the machine coordinate system  
(the transformation matrix). Consequently, different values 
of geometric deviations at each measurement point are 
obtained for different sampling strategies. This is illustrated 
in Fig. 1 which shows the outlines of geometric deviations 
of the milled free-form surface for three different sets  
of data used to perform the process of fitting the measure-
ment data to the CAD model. As the result of surface scan-
ning, coordinates of 1500 measurement points were  
obtained. From the scanned data set, three sets of points  
of different numbers and locations were selected. After 
having performed the process of fitting these points to the 
CAD model, the surface geometric deviations were deter-
mined. The differences in the deviations values and their 
distribution contours on the surface are clearly visible.   

Minimising the F function, the T(t) transformation ma-
trix between the object coordinate systems and the machine 
coordinate systems is determined according to the depend-
ence (5). This is a 4 x 4 matrix in the form (Yau and Menq, 
1996; Kiciak, 2000): 
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where: T(t) – transformation matrix between the object and 
the machine coordinate systems, t – transformation, rotation 
and translation parameters vector, R – 3 x 3 rotation matrix, 
R(tα,tβ ,tγ), tα, tβ , tγ  axis rotation angles, P  – translation 
vector between the origins, [ ]TtztytxP ,,= . 

A transformation matrix (6) is a combination of rotation 
and translation, and in general case it has six degrees  
of freedom, and the transformation parameters set (vector) 
can be described as t=[tx,ty,tz,tα,tβ,tγ]. For 3D axis-sym-
metrical surfaces the number of parameters is smaller. For 
example, for a cylinder and a cone it amounts to 5 (three 
translation vector components and two rotation vector com-
ponents). In the case of a 2D surface there are two transla-
tion components and one rotation angle. In the specific case 
of a 2D circle (an axis-symmetrical shape), the transforma-
tion parameters vector has two components (these of trans-
lation). 

a)           b) 
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    c)           d) 

  
Fig. 1. Contour graphs of geometric deviations: a) before best fitting, b) after best fitting of 15 points, c) after best fitting 108 points, d) after 

best fitting 1500 points 

3. TRANSFORMATION PARAMETERS 
    DISTRIBUTION 

The location and orientation of the object coordinate 
system in relation to the machine coordinate system is de-
scribed with the T(t) transformation matrix. The object 
coordinate system location is obtained after applying  
the procedure of fitting the scanned measurement data  
to the nominal surface. Different sampling strategies result 
in scattering of the object coordinate system location  
and orientation, and in variability of transformation matrix 
parameters, or fitting uncertainty. Fitting uncertainty  
is therefore inseparably connected with the values and 
distribution of the object processing errors as well as with  
the number of measurement points.  

Surface geometric deviations are attributed to many fac-
tors. Different sources of errors in the production process 
leave traces on the surface, and deviations are the cumula-
tive effect of the influence of these sources. Geometric 
deviations may be divided into three components: shape 
deviations, waviness, and roughness. Components con-
nected with shape deviations and waviness are strongly 
correlated and are usually deterministic in character. Sur-
face roughness means irregularities of great frequency;  

in the context of the distance between measurement points  
it might be assumed that they are random in character.  
The share of random phenomena on a surface depends  
on the machining type. The literature shows that after preci-
sion milling, values of random geometric deviations  
of the surface are greater than these of deterministic devia-
tions. 

If random surface geometric deviations have normal 
distribution, for a big enough number of measurement 
points assumed as the transformation base, it can be as-
sumed that the transformation parameters are random vari-
ables of normal distribution. In a border situation, for an 
infinite number of measurement points, the expected values 
of transformation parameters describing the location of the 
coordinate system of the specific measured surface will be 
obtained. Consequently, the distributions of transformation 
parameters deviations from the expected values are also 
normal (Chapter 5). 

In general case, the multivariate normal distribution  
of many variables has the following form (Kotulski  
and Szczepiński, 2004): 

( ) ( )[ ]μλμ
λπ
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where: λ  – n x n covariance matrix,  x=[x1 ,..., xn] – the 
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independent random variables vector of normal distribu-
tions, μ=[μ ,..., μn] T– the expected values vector. 
 

For the case of analysing the joint distribution f(Δt)  
of the vector of transformation parameters deviations cen-
tred around the expected values (μ = 0), the above depen-
dence (7) can be illustrated as follows:  

( ) ( )[ ]tttf T
n

ΔΔ−=Δ −15,0exp
]det[)2(

1)( λ
λπ

               (8) 

where: λ  – 6 x 6 covariance matrix, Δt= [dx,dy,dz,ax,ay,az] 
– the vector of transformation parameters deviations from 
their expected values. 

Variability of the parameters deviations vector is con-
nected with equal probability (probability concentration) 
surfaces described by equation (9):  

( ) ( ) 21 ηλ =ΔΔ − tt T                                                              (9) 

where:η – the constant dependent on the assumed probabil-
ity. 

These surfaces have the shapes of hyperellipsoids 
whose centres are determined by the expected values vec-
tor.  
The directions of the hyperellipsoids axes determine eigen 
(unit) vectors of the covariance matrix, and the squared 
lengths of the semi-axes – the corresponding eigen values  
of the covariance matrix. 

 The eigen vectors and values of a covariance matrix 
might be obtained by decomposing this matrix (10) (matrix 
properties allow for this). 

TUUΛ=λ                                                                       (10) 

where: U – matrix whose columns are the covariance ma-
trix eigen vectors, Λ – diagonal matrix of the covariance 
matrix eigen values. 

The hyperellipsoid size is dependent on the assumed 
probability, and the constant η  value is determined from the 
chi-square distribution, in this case for six degrees of free-
dom (Kotulski and Szczepiński, 2004). 

 The aim of the procedure is to determine the fitting 
uncertainty, or the scatter limits of the Δt transformation 
parameters deviations vector from the expected values  
of these parameters vector for a specific probability.  
The limits are in the shape of hyperellipsoids contours 
whose centres are located in the point determined  
by the expected values vector; the object coordinate system 
origin (transformation parameter vector) will be found  
in the space limited by them with the assumed probability.  

4. MEASURED SURFACE CHARACTERISTICS 

The experiments were performed on a free-form surface 
obtained in a three-stage milling process. In the last stage 
(profiling), the following parameters were applied: a ball-
end mill of 6 mm in diameter, rotational speed equal  
to 7500 rev/min, working feed 300 mm/min and zig-zag 
cutting path in the XY plane  

The surface was subsequently scanned with the UV 

method, 2500 (50 rows and 50 columns) uniformly distri-
buted measurement points were scanned from the surface 
(Fig. 2), and the process of fitting the data to the nominal 
surface was then carried out in which the least square 
method was applied and all the measurement points were 
used. 

Geometric deviations of a free-form surface, or normal 
deviations of measurement points from the nominal surface, 
might be calculated after previously determining the devia-
tions components in the x,y,z directions (Werner A., Ponia-
towska M., 2006). Coordinate measuring machines soft-
ware automatically performs such calculations for each 
measurement point in the UV scanning option. 

The first stage consisted of making a detailed character-
istics of the measured surface which meant determining  
the values and character of the obtained deviations ε.  
The surface was characterised by deviations whose statisti-
cal parameters shows Tab. 1 and map is illustrated in Fig. 3, 
and the standard deviation of the geometric deviations from 
the nominal surface amounted to 0.0047 mm. Fig. 4 shows 
the geometric deviations probability distribution. It can be 
assumed that the values of geometric deviations undergoes  
a normal probability distribution. 

 
Fig. 2. Measurement points distribution on CAD model  
           (CMM software) 
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Fig. 3. Map of geometric deviations 
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Fig. 4. Geometric deviations probability distribution 

Tab. 1. Statistical parameters of ε  sample (in mm) 

 geometric 
dev. ε component x component y component z 

mean -0.0137 -0.0006 -0.0001 -0.0141 

std. dev. 0.0047 0.0092 0.0055 0.0057 

min. -0.0263 -0.0316 -0.0167 -0.0108 

max 0.0034 0.0299 0.0227 0.0330 

5. DETERMINING FITTING UNCERTAINTY 

In the next stage, groups of 50 measurement points 
were randomly selected out of the scanned 2500 points fifty 
times in order to perform the fitting. 50 sets of transforma-
tion parameters deviations from their expected values, or 
the values obtained in the process of fitting on the basis of 

all the scanned points, were obtained. Standard deviations 
of parameters are presented in Tab. 2.  The normalities 
of the transformation parameters deviations (dx, dy, dz, ax, 
ay, az) distributions were checked graphically. Probabi-lity 
distribution of all transformation parameters were quasi-
normal. An example distribution for the parameter devia-
tion dx is shown in Fig. 5. As the result, the joint distribu-
tion  
of the vector of transformation parameters deviations was 
also normal. 
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Fig. 5. Probability distribution of the transformation parameter 
             deviation dx 

Tab. 2. Standard deviations of transformation parameters  

 parameter 
dx [mm]

parameter 
dy [mm]

parameter 
dz [mm] 

parameter 
ax[deg] 

parameter 
ay [deg] 

parameter 
az [deg] 

std. 
dev. 0.0036 0.0011 0.0025 0.003 0.002 0.002 

 
Fig. 6. Uncertainty contours and theirs projections on the coordinate system main planes  

Assuming the P=0.95 (η2=χ2
0.95) (6)=12.59 probability for the upper limit of the possible scatter range of the coor-
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dinate transformation and P=0.05 (η2=χ2
0.05) (6)=1.63 for the 

lower limit from the (9) dependence, the equal probability 
hyperellipsoids limiting the (uncertainty) space were estab-
lished. The computations and graphical illustration (Fig. 6) 
of the results were performed in the Matlab programme. 
The asterisks represent the transformation vector deviations 
scatter. It can be observed that the deviations of the trans-
formation vector from their expected value, obtained in the 
experiment, are in the space within the uncertainty conto-
urs.  

The origin of object coordinate system was located  
in the space limited by the obtained uncertainty contour  
with the probability P=0.95. Uncertainty of the object coor-
dinate system was transferred to the uncertainty of each 
point determined in this system (and obviously, each geo-
metric deviation). The contour dimensions were approx. 
0.0252x0.0078x0.0176 mm. A symptom of the fact that  
the X-axis of the hyperellipsoid was greater size from two 
others (semi-axis is approx. 0.0126 mm) was caused  
by the greatest scatter of the component x of  geometric 
deviations ε  (Tab. 1).  

6. CONCLUSION 

In coordinate measurements, before determining the 
geometric deviations of a 3D surface, the process of fitting 
the measurement data to the nominal surface (CAD model) 
is performed. The transformation (rotation and translation) 
parameters describing the relation between the object coor-
dinate system and the machine coordinate system are de-
termined that way. The fitting effect is dependent  
on the number and location of the measurement points  
because of the occurrence of geometric deviations in pro-
ducing particular surfaces in technology processes.  

This paper presents the idea of fitting the measurement 
data to the CAD model with the use of the least square 
method, as well as the idea of determining the uncertainty 
contours at the assumption that the six transformation pa-
rameters are subject to a multivariate normal probability 
distribution. These equal probability contours are in a shape 
of hyperellipsoids determined from the multivariate normal 
distribution of six transformation parameters for the as-
sumed confidence level. 

The theoretical issues were verified by the experiments 
carried out on a free-form surface obtained in the milling  
process and characterised by random geometric deviations. 
Experimental values of the transformation parameters  
vector are located in the space limited by theoretically de-
termined uncertainty contours which were determined  
and presented graphically. Scatters of  translation parame-
ters dx, dy, dz were approx. 3 times smaller then scatters  
of x, y, z components of geometric deviations. Dimensions 
of uncertainty hyperellipsoid centered around the expected 
values were 0.0252x0.0078x0.0176 mm.  
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