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Abstract: In this article authors described the control system for Flywheel Energy Storage. The device consists of the power 
electronic system and control system. The control system based on the FPGA. The power electronic system consists of the 
special rectifier and converter.  

1. INTRODUCTION 

The paper presents an experimental investigation  
of a flywheel energy storage system. The device is based  
on a flywheel concept and stores mechanical energy. This 
device contains a brushless DC motor supplied by an elec-
tronic commutator. A steel barrel performs the function  
of the flywheel. From the power network side this device  
is perceived as the unity power factor load. This is achieved 
owing to the use of the rectifier with sinusoidal source 
current. Energy storage is one of the main problems  
of contemporary technology. Currently, the following  
methods for energy storage are used: 
− magnetic accumulator – the energy is kept in the ma-

gnetic field of a superconductive induktor; 
− battery with supercapacitors – its disadvantage is the 

low voltage (1,8-2,4V); 

− battery with lead-acid or alkaline cells; the disadvanta-
ge of this solution is a very low charging and dischar-
ging efficiency; 

− electromechanical accumulator – flywheels store ener-
gy mechanically in the form of the kinetic energy. 

2. FLYWHEEL ENERGY STORAGE 

Stored energy, in Flywheel Energy Storage, depends  
on moment of inertia of the rotor and the square of the 
rotational speed of the flywheel. The moment of inertia 
depends on the radius, mass and height (length) of the rotor. 
Energy is transferred to the flywheel, when the machine 
operates as motor, charging the energy storage device.  
The flywheel is discharged when the electric machine re-
generates through the drive.   

 
Fig. 1.  The scheme of the FES supply system 

3. POWER ELECTRONIC SYSTEM  

Power electronic converters consist of two circuits:  
a control system (measuring sensors, controllers, PWM 

sections, dead time elements, contactors and pushbuttons 
control, protection algorithms, algorithms for the system 
control in specific operation modes, e.g. system starting) 
and a power circuit (power semiconductor devices, passive 
LC elements, contactors). 
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Three phase rectifier is a part of Power Electronic  
system for supply of brushless DC motor (BLDCM). In this 
device the three phase transistor converter which worked  
as a rectifier with sinusoidal source current was introduced. 
Additionally, bidirectional power flow (possibility of ener-
gy return from drive system to supply system) and DC 
voltage stabilization was possible. The converter, supplying 
the machine, was constructed on the basis on 3rd generation 
Intelligent Power Module (PM50RLA120) with integrated 
gate drive and brake-control. The PWM with unipolar  

voltage switching was used in inverter, which resulted  
in following advantages: 
− reduction of the switching losses in the transistor; 
− reduction of the ripple voltage with switching  

frequency.  
The control system was constructed on the basis  

of a FPGA–CYCLONE II (Altera). In Fig 2 the realization 
of the switching transistors in converter is shown. The  
signals Sa, Sb, Sc are received from the Hall Sensors.    
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Fig. 2. The control system of the converter in Cyclone II (QUARTUS) 
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Fig. 3. The diagram of the control system in QUARTUS 

Field Programmable Gate Arrays (FPGA) are now 
commonly applied to control and signal analysis systems. 
FPGAs hardware resources (logical elements, DSP mo-
dules, memories and PLLs) are used in building converter 
system elements capable of simultaneously executing se-
veral real-time algorithms. The paper presents FPGAs  
application opportunities, illustrated with actual applica-
tions in converter systems control. A method for real-time 

simulation of control systems implemented in FPGA  
elements, is also presented in this paper. The method  
utilizes the FPGA computing parallelism and is dedicated 
for rapid, safe and cheap prototyping of physical processes 
controllers, as well as control and protection algorithms, 
e.g. for power electronic converters.  
CYCLONE II EP2C20: 
Features:  
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The Cyclone II offers the following features: 
− high-density architecture with 18,752 Les; 
− M4K embedded memory blocks; 
− 4,096 memory bits per block (4,608 bits per block in-

cluding 512 parity bits); 
− variable port configurations of ×1, ×2, ×4, ×8, ×9, ×16, 

×18, ×32, and ×36; 
− up to 260-MHz operations; 
− embedded multipliers; 
− 18- × 18-bit multipliers are each configurable as two 

independent 9- × 9-bit multipliers with up to 250-MHz 
performance; 

− optional input and output registers; 
− advanced I/O support; 
− 315 I/O pins; 
− single-ended I/O standard support, including 2.5-V and 

1.8-V, SSTL class I and II, 1.8-V and 1.5-V HSTL class 
I and II, 3.3-V PCI and PCI-X 1.0, 3.3-, 2.5-, 1.8-, and 
1.5-V LVCMOS, and 3.3-, 2.5-, and 1.8-V LVTTL; 

− four PLLs per device provide clock multiplication and 
division, phase shifting, programmable duty cycle, and 
external clock outputs, allowing system-level clock 
management and skew control. 
In Fig. 1 the diagram of power electronic system with 

control system is shown. The analog signals (current) were 
measured by LEM sensors. The analog signals were con-
verted by fast 12-bits A/D converters. The MAX1309  
is a 12-bit, analog-to-digital converters (ADCs) offer eight  
independent input channels. Independent track-and-hold 
(T/H) circuitry provides simultaneous sampling for each 
channel. The MAX1309  provide a ±5V input range with 

±16.5V fault-tolerant inputs. ADCs convert two channels  
in 0.9μs, and up to eight channels in 1.98μs, with  
an 8-channel throughput of 456ksps per channel. Other 
features include a 20MHz T/H input bandwidth, internal 
clock, internal (+2.5V) or external (+2.0V to +3.0V) refe-
rence, and power-saving modes. A 20MHz, 12-bit, bidirec-
tional parallel data bus provides the conversion results and 
accepts digital inputs that activate each channel individu-
ally. All devices operate from a +4.75V to +5.25V analog 
supply and a +2.7V to +5.25V digital supply and consume 
57mA total supply current when fully operational. 

Most computations (the rotor position, actual speed, 
current error, regulators) are carried out by CYCLONE II. 
Output data, in the form of transistor’s driving pulses, are 
fed back to the FPGA structure, where control logic was 
generated allowing for safe switching of transistors in the 
inverter’s branch. The current regulation of BLDC motor 
can be worked out in the same way as for classic DC ma-
chine with separately excited, by means of PI controller. 
The feedback signal for PI controller is a signal, which  
is proportional to current wave (absolute value Id) of DC 
source.  

This signal can be received: 
a) directly from DC current sensor (as absolute value  

of DC source current); 
b) as signal proportional to the sum of module of load 

phase AC current.   
The control algorithm is implemented in CYCLONE II. 

In Fig. 3 the scheme of the control system, where the signal 
in control loop is proportional to the sum of absolute value 
of load phase AC current, was shown.  

4. THE PRACTICAL RESULTS 
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Fig. 4. The appearance of supply and control system of FES 
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Fig. 5. The appearance of the FES 
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Fig. 6. The phase current and the Hall sensors signals 
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Fig. 7. The waves of phases current 
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Fig. 8. The phase current waves. Motor and generator work 

In Fig. 7 the waves of phases in the BLDC motor are 
shown. The rotor position is calculated on the basis of Hall 
sensors signals. In the Fig. 6 the signals from Hall sensors 
and phase current are shown. Above figures illustrate rela-
tionship between these waves. In the Fig. 8 the work  
as generator and motor work are shown (charging and dis-
charging of FES). 

5. CONCLUSION 

Description and practical test results of the Flywheel 
Energy Storage System were presented. The system  
was developed on the basis of two power electronic de-
vices: the rectifier with sinusoidal source current and the 
power electronic commutator for the brushless DC motor. 
The research on the Flywheel Energy Storage has proved 
that energy storage in the form of kinetic energy is highly 
efficient. The maximum speed of the barrel used in this 
research is limited. The current waves in real circuit are  
of better quality than the simulation results. The future 
research will concentrate on the control system based  
on FPGA only. The IPM of 5th  generation with lower 
losses will be used in the inverter.   
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