ZESZYTY NAUKOWE POLITECHNIKI BIAL.OSTOCKIEJ 2009
Informatyka — Zeszyt 4

Kazimierz Trzesicki!

LOGIC IN FORMAL VERIFICATION OF COMPUTER
SYSTEMS. SOME REMARKS.

Abstract: Various logics are applied to specification and verification of both hardware and
software systems. The problem with finding of proof is the most important disadvantage of
proof-theoretical method. The proof-theoretical method presupposes the axiomatization of
the logic. Proprieties of a system can also be checked using a model of the system. A model
is constructed with the specification language and checked using automatic model checkers.
The model checking application presupposes the decidability of the task.

Keywords: Logic, Verification, Proof-theoretical Method, Model Checking

1. Logic in Computer Science

Connections between logic and computer science (CS) are wide-spread and varied.
Notions and methods from logic can fruitfully be applied within CS. Logic plays the
same role in CS as the calculus plays in physics. Logic is ,.,the calculus of computer
science” [74,16,29].

On the one hand, logic permeates more and more its main areas. On the other
hand we may notice that [59, p. 181]:

Until the invention of the digital computer, there were few applications of for-
mal mathematical logic outside the study of logic itself. In particular, while
many logicians investigated alternative proof systems, studied the power of
various logics, and formalized the foundations of mathematics, few people
used formal logic and formal proofs to analyze the properties of other sys-
tems. The lack of applications can be attributed to two considerations: (i) the
very formality of formal logic detracts from its clarity as a tool of communi-
cation and understanding, and (ii) the “natural” applications of mathematical
logic in the pre-digital world were in pure mathematics and there was lit-
tle interest in the added value of formalization. Both of these considerations

! University of Bialystok

151

Kazimierz Trzesicki

changed with the invention of the digital computer. The tedious and precise
manipulation of formulas in a formal syntax can be carried out by software
operating under the guidance of a user who is generally concerned more with
the strategic direction of the proof.

The logical methods are applicable for the design, specification, verification?
and optimization of programs, program systems and circuits. Logic has a significant
role in computer programming. While the connections between modal logic® and CS
may be viewed as nothing more than specific instances, there is something special to
them.

In 1974 the British computer scientist Rod M. Burstall first remarked on the
possibility of application of modal logic to solve problems of CS. The Dynamic Logic
of Programs has been invented by Vaughan R. Pratt [81]:

In the spring of 1974 I was teaching a class on the semantics and axiomatics of
programming languages. At the suggestion of one of the students, R. Moore,
I considered applying modal logic to a formal treatment of a construct due to
C. A.R. Hoare, “p{a}q”, which expresses the notion that if p holds before ex-
ecuting program a, then g holds afterwards. Although I was skeptical at first,
a weekend with Hughes and Cresswell* convinced me that a most harmonious
union between modal logic and programs was possible. The union promised

2 Some authors distinguish between Validation and Verification and refer to the overall checking
process as V&V. Validation is answering to the question: Are we trying to make the right thing?.
Verification answer the question: Have we made what we were trying to make? In general methodol-
ogy of sciences the term “verification” denotes establishing correctness. The term “falsification” (or
“refutation”) is used in meaning: to detect an error. In CS “verification” covers both the meanings
and refers to the two-sided process of determining whether the system is correct or erroneous.

For Dijkstra [33] the verification problem is distinct from the pleasantness problem which con-
cerns having a specification capturing a system that is truly needed and wanted. Emerson observes
that [36, p. 28]:

The pleasantness problem is inherently pre-formal. Nonetheless, it has been found that care-
fully writing a formal specification (which may be the conjunction of many sub-specifications)
is an excellent way to illuminate the murk associated with the pleasantness problem.

3 The traditional modal logic deals with three *modes’ or "moods’ or *modalities’ of the copula ‘to
be’, namely, possibility, impossibility, and necessity. Related terms, such as eventually, formerly,
can, could, might, may, must, are treated in a similar way, hence by extension, logics that deals with
these terms are also called modal logics.

The basic modal operator [J (necessarily) is not rigidly defined. Different logics are obtained form
different definition of it. Here we are interested in temporal logic that is the modal logic of temporal
modalities such as: always, eventually.

4 The book Pratt is talking about is An Introduction to Modal Logic [55].

152

Logic in Formal Verification of Computer Systems. Some remarks.

to be of interest to computer scientists because of the power and mathemati-
cal elegance of the treatment. It also seemed likely to interest modal logicians
because it made a well-motivated and potentially very fruitful connection be-
tween modal logic and Tarski’s calculus of binary relations.

This approach was a substantial improvement over the existing approach based on the
pre-condition/post-condition mechanism provided by Hoare’s logic.> Kripke models,
the standard semantic structure on which modal languages are interpreted, are nothing
but graphs. Graphs are ubiquitous in CS.

The connection between the possible worlds of the logician and the internal
states of a computer is easily described. In possible world semantics, ¢ is possible in
some world w if and only if ¢ is true in some world w’ accessible to w. Depending
on the properties of the accessibility relation (reflexive, symmetric, and so on), there
will be different theorems about possibility and necessity. The accessibility relation
of modal logic semantics can thus be understood as the relation between states of
a computer under the control of a program such that, beginning in one state, the
machine will (in a finite time) be in one of the accessible states. In some programs, for
instance, one cannot return from one state to an earlier state; hence state accessibility
here is not symmetric.

The question of using of temporal logic (T'L) to software engineering was un-
dertaken by Kroger [61,62,63,64]. The development of TL as applied to CS is due
to Amir Pnueli. He was inspired by ,, Temporal Logic”, a book written by Rescher
and Urquhart [84].% ,,The Temporal Logic of Programs” [79], a paper by Pnueli,’ is
the classical source of TL for specification and verification of programs. This work
is commonly seen as a crucial turning point in the progress of formal methods for
the verification of concurrent and reactive systems. Amir Pnueli argues that temporal
logic can be used as a formalism to reason about the behavior of computer programs
and, in particular, of non-terminating concurrent systems.® In general, properties are

5 Hoare’s logic views a program as a transformation from an initial state to a final state. Thus it is not
eligible to tackle problems of reactive or non-terminating systems, such as operating systems, where
the computation does not bring to a final state.

6 See [42, p. 222].

7 Pnueli received the Turing Award in 1996:

for seminal work introducing temporal logic into computing science and for outstanding con-
tributions to program and system verification.

8 A system is said to be concurrent when its behavior is the result of the interaction and evolution of

multiple computing agents. The initial interest in concurrent systems was motivated by the speed
improvements brought forth by multi-processor computers.

153

Kazimierz Trzesicki

mostly describing correctness or safety of the system’s operation. For Clarke [20,
p- 1] works of Pnueli [79], Owicki and Lamport [78]:

demonstrated convincingly that Temporal Logic was ideal for expressing con-
cepts like mutual exclusion, absence of deadlock, and absence of starvation.

There is a difference between logician and computer scientists approach to sys-
tems of logics [14, p. 315]:

Decidability and axiomatization are standard questions for logicians; but for
practitioner, the important question is model-checking.

In opinion of Dijkstra:°

The situation of programmer is similar to the situation of mathematician,
who develops a theory and proves results. [...] One can never guarantee that
a proof is correct, the best one can say, is: “I have not discovered any mis-
takes”. [...] So extremely plausible, that the analogy may serve as a great
source of inspiration. [...]

Even under the assumption of flawlessly working machines we should ask
ourselves the questions: “When an automatic computer produces results, why
do we trust them, if we do so?”’ and after that; “What measures can we take
to increase our confidence that the results produced are indeed the results
intended?”

In another work [32, p. 6] Dijkstra says:

Program testing can be used to show the presence of bugs, but never to show
their absence.

Formulated in terms of Turing Machines, the verification problem was already con-
sidered by Turing [88]. He demonstrated that there is no general method of proving
of correctness of any program.

Application of a computer system may cause not only material losses, e.g., in
e-banking, but also may be dangerous for life, e.g., in health care, transportation,
especially air and space flights.!? Correctness of design is a very important factor of

9 See Dijkstra E. W., Programming Considered as a Human Activity, http: //www.cs.utexas.edu/
users/EWD/transcriptions/EWD01xx/EWD117.html.

10°A famous example: The Ariane-5 launch on June 4, 1996; it crashed 36 seconds after the launch
due to a conversion of a 64-bit floating point into a 16-bit integer value. In 2008 it was announced
that the Royal Navy was ahead of schedule for switching their nuclear submarines to a customized
Microsoft Windows solution dubbed Submarine Command System Next Generation. In this case any
error may have an unimaginable aftermath.

154

Logic in Formal Verification of Computer Systems. Some remarks.

systems for preventing economical and human losses caused by minor errors. The
reduction of errors in computer systems is one of the most important challenges of
CS [64, p. V]. It has long been known that [36, p. 27]:

computer software programs, computer hardware designs, and computer sys-
tems in general exhibit errors. Working programmers may devote more than
half of their time on testing and debugging in order to increase reliability.
A great deal of research effort has been and is devoted to developing improved
testing methods. Testing successfully identifies many significant errors. Yet,
serious errors still afflict many computer systems including systems that are
safety critical, mission critical, or economically vital. The US National Insti-
tute of Standards and Technology has estimated that programming errors cost
the US economy $60B annually'!.

Computer systems are more and more complicated. Verification of digital hard-
ware designs has become one of the most expensive and time-consuming compo-
nents of the current product development cycle. Empirical testing and simulation is
expensive, not ultimately decisive and sometimes excluded for economical or ethi-
cal reasons. Formal methods are the most notable efforts to guarantee a correctness
of system design and behaviors. Thus the formal specification and computer aided
validation and verification are more and more indispensable. Formal methods have
gained popularity in industry since the advent of the famous Intel Pentium FDIV
bug in 1994, which caused Intel to recall faulty chips and take a loss of $475 million
[28]. Digital computers are intended to be abstract discrete state machines and such
machines and their software are naturally formalized in mathematical logic.

Given the formal descriptions of such systems, it is then natural to reason
about the systems by formal means. And with the aid of software to take
care of the myriad details, the approach can be made practical. Indeed, given
the cost of bugs and the complexity of modern hardware and software, these
applications cry out for mechanical analysis by formal mathematical means.
[59, p. 181-182]

Errors should already be detected at design stage. It is very important to specify
the correctness property of system design and behavior, and an appropriate prop-
erty must be specified to represent a correct requirement. It is estimated that 70%
of design-time is spent to minimize the risk of errors [86], see [76]. Formal meth-
ods, model checkers as well theorem provers, are proposed as efficient, safe and less
expensive tools [59,15]. According to Emerson [36, pp. 27-28]:

11 See: National Institute of Standards and Technology, US Department of Commerce, “Software Errors
Cost U.S. Economy $59.5 Billion Annually”, NIST News Release, June 28, 2002.

155

Kazimierz Trzesicki

Given the incomplete coverage of testing, alternative approaches have been
sought. The most promising approach depends on the fact that programs and
more generally computer systems may be viewed as mathematical objects
with behavior that is in principle well-determined. This makes it possible
to specify using mathematical logic what constitutes the intended (correct)
behavior. Then one can try to give a formal proof or otherwise establish that
the program meets its specification. This line of study has been active for
about four decades now. It is often referred to as formal methods.

2. Formal methods of verification

2.1 Formal methods

Formal methods include: formal specification, specification analysis and proof, trans-
formational development, program verification. The principal benefits of formal
methods are in reducing the number of faults in systems. Consequently, their main
area of applicability is in critical systems engineering. There have been several suc-
cessful projects where formal methods have been used in this area. The use of formal
methods is most likely to be cost-effective because high system failure costs must
be avoided. Nevertheless formal methods have not become mainstream software de-
velopment techniques as was once predicted. Other software engineering techniques
have been successful at increasing system quality. Hence the need for formal meth-
ods has been reduced. Market changes have made time-to-market rather than software
with a low error count the key factor. Formal methods do not reduce time to market.
Moreover, the scope of formal methods is limited. They are not well-suited to spec-
ifying and analyzing user interfaces and user interaction. Formal methods are still
hard to scale up to large systems. Nevertheless as it is stressed by Edmund M. Clarke
[56, p. ix], one of the prominent researcher in the field of formal methods in CS:

Formal methods have finally come of age! Specification languages, theorem
provers, and models checkers are beginning to be used routinely in industry.

The formal methods to be appropriate need to be properly adapted. Temporal
logic and its language are of particular interest in the case of reactive'?, in particular
concurrent systems. The language of 7L is one that fulfills three important criteria.
It:

12 Systems can be divided into two categories: transformational programs (data intensive) and reac-
tive systems (control intensive). The systems of the second type maintain an ongoing interaction
with their environment (external and/or internal stimuli) and which ideally never terminate. Their
specifications are typically expressed as constraints on their behavior over time.

156

Logic in Formal Verification of Computer Systems. Some remarks.

— has the ability to express all sorts of specification (expressiveness);
— has reasonable complexity to evaluate the specified rules (complexity);
— due to its resemblance to natural language is easy to learn (pragmatics).

The knowledge of TL is indispensable in practice, tough, as it is remarked by Sch-
noebelen [87]:

In today’s curricula, thousands of programmers first learn about temporal
logic in a course on model checking!

T L languages can be used to specification of widely spectrum of systems. Methods
of TL can be applied to verification [72]. In the case of reactive systems 7'L is more
useful than Floyd-Hoare logic that is better in the case of “input-output” programs.
TL languages [64, p. 181]:

provide general linguistic and deductive frameworks for state systems in the
same manner as classical logics do for mathematical systems.

There are two main methods: proof-theoretical and model-theoretical [26].

2.2 Proof-theoretical approach

Already in the works of Turing the mathematical methods were applied to check
correctness of programs [83]. By the end of sixties of last century Floyd [37], Hoare
[48] and Naur [77] proposed axiomatic proving sequential programs with respect to
their specification. Proof-theoretical method based on TL was proposed by Pnueli
and Manna [72].

This method is used to prove a correctness of system through logical proving
about system constraints or requirement for safe system behavior. Propositions spec-
ifying the system are joined as premisses to the thesis of deduction system of logic.
Proofs can be “described” a variety of ways, e.g., by giving the inference steps, by
specifying tactics or strategies to try, by stating the “landmark” subgoals or lemmas
to establish, etc. Often, combinations of these styles are used within a single large
proof project. Verification is positive if the proposition expressing the desired prop-
erty is proved by using formal axioms and inference rules oriented towards sequential
programs. Correctness of formal derivations could be “mechanically” checked, but
finding a proof needs some experience and insight.

But all proofs of commercially interesting theorems completed with mechan-
ical theorem proving systems have one thing in common: they require a great
deal of user expertise and effort. [59, pp. 182-183]

157

Kazimierz Trzesicki

For example [59, p. 182]:

The proof, constructed under the direction of this paper’s authors and Tom
Lynch, a member of the design team for the floating point unit, was com-
pleted 9 weeks after the effort commenced. About 1200 definitions and theo-
rems were written by the authors and accepted, after appropriate proofs were
completed by the ACL2'3 theorem prover.

At the time of its introduction in the early 1980’s, a “manual” proof-theoretic ap-
proach was a prevailing paradigm for verification. Nowadays proofs are supported by
semi-automatic means'#, provers and proof checkers. Interactive provers are used to
partially automate the process of proving. Among the mechanical theorem proving
systems used to prove commercially interesting theorems about hardware designs are
ACL2", Coq'®, HOL', HOL Light'8, Isabelle!®, and PV 5?°. The proof assistant ap-
proach is a subject of research projects, e.g. BRICKS http://www.bsik-bricks.
nl/research_projects_afm4.shtml.

The proof-theoretic framework is one-sided. It is possible only to prove that
a proposition is a thesis. If we do not have a proof, we are entitled only to say that we
could not find a proof, and nothing more. However, theorem proving can deal with
an infinite state space, i.e., system with infinitely many configurations. Nevertheless
this method is also indispensable in some intractable cases of finite state systems.
Though today’s model checkers are able to handle very large state spaces, eg. 10'2°
[[59, p. 183], [25]] but it does not mean that these states are explored explicitly.
The above discussed theorem about FDIV (see p. 157) could be checked by running
the microcode on about 10°° examples. Since in this case there are no reduction tech-
niques, if it is assumed that one example could be checked in one femtosecond (1013
seconds — the cycle time of a petahertz processor), the checking of the theorem will
take more than 107 years [59, p. 183].

For Emerson [36, p. 28]:

The need to encompass concurrent programs, and the desire to avoid the dif-
ficulties with manual deductive proofs, motivated the development of model

13 See [71,12].

14 Until the artificial intelligence problem is solved, human interaction will be important in theorem
proving.

15 See http://www.cs.utexas.edu/~moore/acl2/, [59].

16 See http://coq.inria.fr/.

17 See http://www.cl.cam.ac.uk/research/hvg/HOL/, [39].

18 See http://www.cl.cam.ac.uk/~jrh13/hol-1light/.

19 See http://www.cl.cam.ac.uk/research/hvg/Isabelle/.

20 See http://pvs.csl.sri.com/.

158

Logic in Formal Verification of Computer Systems. Some remarks.

checking. In my experience, constructing proofs was sufficiently difficult that
it did seem there ought to be an easier alternative.

2.3 Model-theoretical approach

Both the idea of automatic verification of concurrent programs based on model-
theoretic approach and the term “model checking” were introduced by Clarke and
Emerson in [21],>! and independently the idea of model checking was conceived by
Quille and Sifakis [82].> The idea was developed in works by Clarke, Emerson,
Sistla and other [22,23,24,11,27].

Model checking is a verification technique that is preferred to theorem proving
technique. This method, similarly as it is in the case of logical calculi, is more ef-
fective comparatively to proof-theoretic method. It is one of the most active research
areas because its procedures are automatic and easy to understand.

According to Edmund M. Clarke [20, p. 1]:

Model Checking did not arise in a historical vacuum. There was an important
problem that needed to be solved, namely concurrent program verification.

In another place he continues:??

Existing techniques for solving the problem were based on manual proof con-
struction from program axioms. They did not scale to examples longer than
a page and were extremely tedious to use. By 1981 the time was ripe for a new
approach to the problem, and most of necessary ideas were already in place.

Model checking bridges the gap between theoretical computer science and hard-
ware and software engineering. Model checking does not exclude the use of proof-
theoretical methods, and conversely, the proof-theoretical methods do not exclude
using of model checking. In practice one of theses methods is complementary to the
other at least at the heuristic level. On the one hand, failed proofs can guide to the
discovery of counterexamples. Any attempt of proving may be forego by looking for
counterexamples. Counterexamples of consequences of a theorem can help to refor-
mulate it. Examples may aid comprehension and invention of ideas and can be used
as a basis for generalization being expressed by a theorem. The role of decision pro-
cedures is often essential in theorem proving. There has been considerable interest in

21 See (36, p. 9.

22 E. M. Clarke and E. A. Emerson interpreted concurrent system as finite Kripke structure/transition
system and properties were expressed in CTL language. J.-P. Queille and J. Sifakis based on Petri
nets and properties were expressed in language of branching time logic.

2 See http://events.berkeley.edu/index.php/calendar/sn/coe.html?event.

159

Kazimierz Trzesicki

developing theorem provers that integrate SAT" solving algorithms. The efficient and
flexible incorporating of decision procedures into theorem provers is very important
for their successful use. There are several approaches for combining and augmenting
of decision procedures. On the other hand, the combination of model checking with
deductive methods allows the verification of a broad class of systems and, as it is
in the case of eg. STeP [73], not restricted to finite-state systems. The question of
combining proof-theoretical and model checking methods and the general problem
of how to flexibly integrate decision procedures into heuristic theorem provers are
subjects of many works [13].

In model checking the first task is to convert a system to a formal model ac-
cepted by a model checker. We model a system as a finite state machine. It is a model
in the form of a Kripke structure?* or labeled graph of state transitions — that has to
accurately describe the behavior of the checked system. To do this formal languages
defined by formal semantics must be used. To draw an abstract model many tech-
niques are applied. Many methods are used to reduce states of a system. In practice,
this process is not automated.

The second task is to specify properties that that must be satisfied by the real
system. Mechanically assisted verification of properties of a complex system requires
an accurate formal model of the system. The specification usually is given in some
logical formalism. Generally, temporal logics are used to represent a temporal char-
acteristic of systems.

We perform a model checker whether the system satisfies its properties as ex-
pressed by temporal logic formulas. The answer is positive only if all runs are models
of the given temporal logic formula. The technique is based on the idea of exhaustive
exploration of the reachable state space of a system. For this reason it can only be
applied to systems with a finite state space, i.e., systems with finitely many configu-
rations, and — for practical limitations (tractability) — with not too many states. The
verification is completely automatic with the abstract model and properties. Thus
it is possible to verify the correctness of very complicated and very large systems
manual checking of which is almost not possible. We can verify a complex system
as a hardware circuit or communication protocol automatically. The verification re-

24 Kripke or relational semantics of modal logics has been conceived in fifties of the last century. This
semantics was philosophically inspired nevertheless it has found application in CS. In CS Kripke
structure is associated with a transition system. Because of the graphical nature of the state-space, it
is sometimes referred to as the state graph associated with the system. Similarly as in modal logics
this role may be played by Hintikka frames [8]. A Kripke frame consists of non-empty set and
a binary relation defined on this set. In modal logics elements of the set are called possible worlds
and the relation is understood as accessibility of one world from another. In the case of T'L as applied
in CS the Kripke semantics is based on computational time.

160

Logic in Formal Verification of Computer Systems. Some remarks.

sults are correct and easy to analysis. However, it does need human assistance to
analyze the result of model checking. If logic is complete with respect to the model
and is decidable, then in the case of any proposition that specifies the behavior of
the system the procedure of checking is finite. But if the model is too detailed the
verification becomes intractable. A model checker verifies the model and generates
verification results, “True” or counterexample if the result is “False”. If the proposi-
tion is satisfied the system is verified. If the proposition is not valid the construction
results in a counterexample — this is one of important advantages of model check-
ing. The counterexample provides an information about an error (bug) in the system.
The model checker can produce a counterexample for the checked property, and it
can help the designer in tracking down where the error occurred.

The counterexample gives us a new precondition or a negative result in the fol-
lowing way: When we obtain a counterexample, we analyze it and as far as this trace
could not occur in real system we add new preconditions to the formula. We may ob-
tain a counterexample again which often results to many preconditions. In this case,
analyzing the error trace may require a modification to the system and reapplication
of the model checking process. The error can also result from incorrect modeling of
the system or from an incorrect specification. The error trace can also be useful in
identifying and fixing these two problems.

Model checking comes in two varieties depending on the way the proprieties are
expressed. If theory of automata is employed the system as well as its specification
are described by automaton. Questions concerning system and its specification are
reduced to the question about the behavior of automaton. In other words, when we
say “automata theoretic approach” we mean:

— specifying systems using automata
— reducing model checking to automata theory.

In the case of TL model checking the system is modeled as a finite-state automa-
ton, while the specification is described in temporal language. A model checking
algorithm is used to verify whether the automaton has the proper temporal-logical
proprieties. In other words, if 7L is applied [76, p. 2-3]:

Model checking involves checking the truth of a set of specifications defined
using a temporal logic. Generally, the temporal logic that is used is either
CTL" or one of its sublogics, CTL [...] [23] or LTL[...] [80].

Various model checkers are developed. They are applied to verification of large
models, to real-time systems, probabilistic systems, etc. [50,66,24,10] — see [87].

161

Kazimierz Trzesicki

Software is usually less structured than hardware and, especially in the case of con-
currency, asynchronous. Thus the state space is bigger in the case of software than in
hardware. Consequently, Model Checking has been used less frequently for software
verification than for hardware verification [20, p. 18]. The limits of models check-
ing are pushed by employing work-station clusters and GRIDs, e.g. the VeriGEM
project aims at using the storage and processing capacity of clusters of workstations
on a nation-wide scale www.bsik-bricks.nl/research_projects_afm6.shtml.
Despite being hampered by state explosion, since its beginning model checking has
had a substantive impact on program verification efforts.

It is worth mentioning some of the applications of model checking elsewhere.
These include understanding and analyzing legal contracts, which are after all pre-
scriptions for behavior [31]; analyzing processes in living organisms for systems biol-
ogy [43]; e-business processes such as accounting and workflow systems [91]. Model
checking has also been employed for tasks in artificial intelligence such as planning
[38]. Conversely, techniques from artificial intelligence related to SAT-based plan-
ning [60] are relevant to (bounded) model checking.

Let us repeat after Emerson some interesting remarks concerning model check-
ing [36, p. 42]:

Edsger W. Dijkstra commented to me that it was an “acceptable crutch” if one
was going to do after-the-fact verification. When I had the pleasure of meeting
Saul Kripke and explaining model checking over Kripke structures to him, he
commented that he never thought of that. Daniel Jackson has remarked that
model checking has “saved the reputation” of formal methods.

3. Model checkers

By a model checker we mean a procedure which checks if a transition system system
is a model for a formula expressing a certain property of this system [23].

There is a wide variety of model checkers available, with a number of different
capabilities suited to different kinds of problems. Some of these are academic tools,
others are industrial internal tools, and some are for sale by CAD vendors. The variety
is of great benefit to practitioners. They have to know which tools are available and
which tools to chose for a particular problem. Today, software, hardware and CAD
companies employ several kinds of model checkers. In software, Bell Labs, JPL,
and Microso ft, government agencies such as NASA in USA, in hardware and CAD,
IBM, Intel (to name a few) have had tremendous success using model checking for
verifying switch software, flight control software, and device drivers.

162

Logic in Formal Verification of Computer Systems. Some remarks.

Some programs are grouped as it is in the case of MODEL-CHECKING
KIT http://www.fmi.uni-stuttgart.de/szs/tools/mckit/overview.shtml.
This is a collection of programs which allow to model a finite-state system using
a variety of modeling languages, and verify it using a variety of checkers, includ-
ing deadlock-checkers, reachability-checkers, and model-checkers for the temporal
logics CTL and LT L. The most interesting feature of the Kit is that:

Independently of the description language chosen by the user, (almost) all
checkers can be applied to the same model.

The counterexamples produced by the checker are presented to the user in terms of
the description language used to model the system.

The Kit is an open system: new description languages and checkers can be added
to it.

The description languages and the checkers have been provided by research
groups at the Carnegie-Mellon University, the University of Newcastle upon Tyne,
Helsinki University of Technology, Bell Labs, the Brandenburg Technical University
at Cottbus, the Technical University of Munich, the University of Stuttgart, and the
Humboldt-Universitdt zu Berlin.

Problems of techniques and tools of verification of /CT systems are subjects of
research projects. E.g., in the scheme of BRICKS http://www.bsik-bricks.nl/
index.shtml under theme Algorithms and Formal Methods there are developed

Advancing the Real Use of Proof Assistants

Infinite Objects: Computation, Modeling and Reasoning

A Verification Grid for Enhanced Model Checking

Modeling and Analysis of QoS for Component-Based Designs

A Common Framework for the Analysis of Reactive and Timed Systems

Many of the research problems originating from industrial parties.

Below we give a few examples of model checkers. Usually they description will
be taken from they website home pages.

Two of the most popular on-the-fly, explicit-state-based model checkers are
SPIN (Simple Promela INterpreter) and MUR® or MURPHI [35,34].

SPIN is:

a popular open-source software tool, used by thousands of people worldwide,
that can be used for the formal verification of distributed software systems.
The tool was developed at Bell Labs in the original UNIX group of the Com-
puting Sciences Research Center, starting in 1980. The software has been

163

Kazimierz Trzesicki

available freely since 1991, and continues to evolve to keep pace with new
developments in the field. In April 2002 the tool was awarded the presti-
gious System Software Award for 2001 by the ACM. http://spinroot.
com/spin/whatispin.html

SPIN continues to evolve to keep pace with new developments in the field. The
DSPIN tool [57] is an extension of SPIN, which has been designed for modeling and
verifying object-oriented software (JAVA programs, in particular).

Mur¢ is a system description high-level language and model checker developed
to formally evaluate behavioral requirements for finite-state asynchronous concurrent
systems [35,34], http://sprout.stanford.edu/dill/murphi.html. Murdis de-
veloped by a research group at the University of Utah http://www.cs.utah.edu/
formal_verification/.

SMV http://www.cs.cmu.edu/~modelcheck/smv.html (Symbolic model
verifier) is a model checker that accepts both the temporal logics LTL and CTL. It
is the first and the most successful OBDD-based symbolic model checker [75]. SMV
has been developed by The Model Checking Group that is a part of Specification
and Verification Center, Carnegie Mellon University http://www-2.cs.cmu.edu/
~modelcheck/index.html.

CADENCE SMV http://www.kenmcmil.com/smv.html is a symbolic model
checking tool released by Cadence Berkeley Labs. CADENCE SMV is provided for
formal verification of temporal logic properties of finite state systems, such as com-
puter hardware designs. It is an extension of SMV. It has a more expressive mode
description language, and also supports synthesizable VERILOG as a modeling lan-
guage.

NUSMV http://nusmv.irst.itc.it, http://nusmv.fbk.eu is an updated
version of SMV [18,17]. The additional features contained in NUSMYV include a tex-
tual interaction shell and graphical interface, extended model partitioning techniques,
and facilities for LTL model checking. NUSMV [19] has been developed as a joint
project between Formal Methods group in the Automated Reasoning System divi-
sion at Istituto Trentino di Cultura, Istituto per la Ricerca Scientifica e Tecnologica in
Trento, Italy), the Model Checking group at Carnegie Mellon University, the Mech-
anized Reasoning Group at the University of Genoa and the Mechanized Reasoning
Group at the University of Trento.

NUSMV 2 is open source software. It combines BDD-based model checking
with SAT-based model checking. It has been designed as an open architecture for
model checking. NUSMV 2 exploits the CUDD library developed by Fabio Somenzi
at Colorado University and SAT-based model checking component that includes an

164

Logic in Formal Verification of Computer Systems. Some remarks.

RBC-based Bounded Model Checker, connected to the SIM SAT library developed
by the University of Genova. It is aimed at reliable verification of industrially sized
designs, for use as a back-end for other verification tools and as a research tool for
formal verification techniques.

An enhanced version of SMV, RULEBASE www.haifa.ibm.com/projects/
verification/RB_Homepage/ [7] is an industry-oriented tool for the verification
of hardware designs, developed by the IBM Haifa Research Laboratory. In an effort
to make the specification of CTL properties easier for the non-expert, RULEBASE
supports its own language, Sugar. In addition, RULEBASE supports standard hard-
ware description languages such as VHDL and VERILOG. RULEBASE is especially
applicable for verifying the control logic of large hardware designs.

VEREOFY http://www.vereofy.de/ was written at Technische Universitit
Dresden. It is developed in the context of the EU project CREDO. VEREOFY is
a formal verification tool of checking of component-based systems for operational
correctness.

Model checking tools were initially developed to reason about the logical cor-
rectness of discrete state systems, but have since been extended to deal with real-time
and limited forms of hybrid systems. Real-time systems are systems that must per-
form a task within strict time deadlines. Embedded controllers, circuits and commu-
nication protocols are examples of such time-dependent systems. The hybrid model
checker HYTECH [44] is used to analyze dynamical systems whose behavior ex-
hibits both discrete and continuous change. HYTECH automatically computes the
conditions on the parameters under which the system satisfies its safety and timing
requirements.

The most widely used dense real-time model checker (in which time is viewed as
increasing continuously) is UPPAAL www.uppaal.com/ [70]. Models are expressed
as timed automata [2] and properties defined in UPPAAL logic, a subset of Timed
Computational Tree Logic (T'CTL) [1]. UPPAAL is an integrated tool environment
for modeling, validation and verification of real-time systems modeled as networks
of timed automata, extended with data types (bounded integers, arrays, etc.). The tool
is developed in collaboration between the Department of Information Technology at
Uppsala University, Sweden and the Department of Computer Science at Aalborg
University in Denmark.

Another real-time model checker is KRONOS http://www-verimag.imag.fr/
TEMPORISE/kronos/ [92]. KRONOS is developed at VERIMAG, a leading research
center in embedded systems in France. KRONOS checks whether a real-time system
modeled by a timed automaton satisfies a timing property specified by a formula of
the Timed Computational Tree Logic TCTL, a timed extension of CT L.

165

Kazimierz Trzesicki

Model checking requires the manual construction of a model, via a model-
ing language, which is then converted to a Kripke structure or an automaton for
model checking. Model checking starts with translation to model checker language.
In model checking considerable gains can be made by finding ways to extract models
directly from program source code. There have been several promising attempts to
do so.

VERISOFT http://cm.bell-labs.com/who/god/verisoft/ is the first
model checker that could handle programs directly.

The first version of BLAST (Berkeley Lazy Abstraction Software
verification Tool) http://mtc.epfl.ch/software-tools/blast/,
http://www.sosy-lab.org/~dbeyer/blast_doc/blast001.html,
www.sosy-lab.org/~dbeyer/blast_doc/blast.pdf [45] was developed for
checking safety properties in C programs at University of California, Berkeley.
The BLAST project is supported by the National Science Foundation. BLAST
is a popular software model checker for revealing errors in Linux kernel code.
BLAST is relatively independent of the underlying machine and operating
system. It is free software, released under the Modified BSD license http:
//www.oss-watch.ac.uk/resources/modbsd.xml. BLAST is based on similar
concepts as SLAM http://research.microsoft.com/en-us/projects/slam/.
BLAST and SLAM are relatively new. SLAM was developed by Microsoft Research
around 2000, i.e., earlier than BLAST, which was developed around 2002. Both the
checkers have many characteristics in common. One key difference between SLAM
and BLAST is the use of lazy abstraction in BLAST.

SLAM has been customized for the Windows product StaticDriverVerifier,
SDV, a tool in the WindowsDriverDevelopmentKit.

SLAM and BLAST differ from other model checking tools in many ways. First
of all, the traditional approach to model-checking (followed by SPIN and KRONOS)
has been to first create a model of a system, and once the model has been verified,
move on to the actual implementation. SLAM and BLAST fall in the category of the
“modern” approach in model checking. The user has already completed the imple-
mentation and wishes to verify the software. The objective then is to create a model
from the existing program and apply model checking principles, such that the original
program is verified.

The FEAVER (Feature Verification system) http://cm.bell-labs.com/cm/
cs/what/feaver/ tool grew out of an attempt to come up with a thorough method
to check the call processing software for a commercial switching product, called the
PATHSTAR® access server [54,51]. It allows models to be extracted mechanically

166

Logic in Formal Verification of Computer Systems. Some remarks.

from the source of software applications, and checked using SPIN. SPIN allows C
code to be embedded directly within a PROMELA specification [53,52].

The Time Rover http://www.time-rover.com/ is a specification based veri-
fication tool for applications written in C, C++, JAVA, VERILOG and VHDL. The
tool combines formal specification, using LTL and MTL, with conventional simu-
lation/execution based testing. The Temporal Rover is tailored for the verification
of complex protocols and reactive systems where behavior is time dependent. The
methodology and technology are based on the Unified Modeling Language (UML)
and are currently in active use by NASA and the national Missile Defense develop-
ment team.

Since Pnueli introduced temporal logic to computer science, the logic has been
extended in various ways to include probability. Probabilistic techniques have proved
successful in the specification and verification of systems that exhibit uncertainty.
Early works in this field were focusing on the verification of qualitative properties.
These included work of [30] which considered models of two types, Discrete-Time
Markov Chains (DTMCs) and Markov Decision Processes (MDPs).

Tools concerning model checking probabilistic systems such as PRISM (PRo-
babilistic Symbolic Model Checker) http://www.cs.bham.ac.uk/~dxp/prism/,
[67,69,68] have been developed and applied to several real-world case studies.
Other tools include ETMCC [46], CASPA [65] and MRMC (Markov Reward Model
Checker) [58].

ETMcc [90] requirements against action-labeled continuous time Markov
chains. Probabilistic Model Checker ETMCC (Erlangen-Twente Markov Chain
Checker) [46] is developed jointly by the Stochastic Modeling and Verification group
at the University of Erlangen-Niirnberg, Germany, and the Formal Methods group at
the University of Twente, the Netherlands. ETMCC is the first implementation of
a model checker for Discrete-Time Markov Chains (DTMs) and Continuous-Time
Markov Chains (CTMCs). It uses numerical methods to model check PCT L [41] and
Continuous Stochastic Logic (CSL)> formulas respectively for DTMCs and CTMCs.

Markov Reward Model Checker Markov Reward Model Checker (MRMC)
http://www.mrmc-tool.org/trac/ has been developed by the Formal Methods
& Tools group at the University of Twente, The Netherlands and the Software Mod-
eling and Verification group at RWTH Aachen University, Germany under the guid-
ance of Joost-Pieter Katoen [5, Ch. 10 Probabilistic systems]. MRMC is a successor
of ETMCC, which is a prototype implementation of a model checker for continuous-
time Markov chains.

5 A branching-time temporal logic a” la CT L with state and path formulas [4,6,3].

167

Kazimierz Trzesicki

PrRISM stands for Probabilistic Symbolic Model Checker http://www.
prismmodelchecker.org/. It is the internationally leading probabilistic model
checker being implemented at the University of Birmingham [67,69,68], http:
//www.cs.bham.ac.uk/~dxp/prism/. First public release: September 2001.

There are three types of probabilistic models that PRISM can support directly:
Discrete-Time Markov Chains, Markov decision processes and Continuous-Time
Markov Chains.

PRISM [69,85] allows time to be considered as increasing either in discrete steps
or continuously. Models are expressed in PRISM own modeling language and con-
verted to a variant of a Markov chain (either discrete- or continuous-time). Properties
are written in terms of PCT L or CSL, respectively. Models can also be expressed us-
ing PEPA (Performance Evaluation Process Algebra) [47] and converted to PRISM.
PRISM is free and open source, released under the GNU General Public License
(GPL), available freely for research an teaching.

References

[1] Alur R., Courcoubetis C., Dill D. L. (1990): Model-checking for real-time sys-
tems, in ‘Proceedings of the Sth Annual IEEE Symposium on Logic in Com-
puter Science’, IEEE Computer Society Press, Philadelphia, PA, pp. 414-425.

[2] Alur R., Dill D. (1993): A theory of timed automata’, Inf. Comput. 194, 2-34.

[3] Aziz A., Sanwal K., Singhal V., Brayton R. (2000): Model checking continuous
time Markov chains, ACM Trans. Computational Logic 1(1), 162-170.

[4] Aziz A., Sanwal K., Singhal V., Brayton R. K. (1996): Verifying continuous
time Markov chains, in R. Alur, T. A. Henzinger, eds, ‘Eighth International Con-
ference on Computer Aided Verification CAV 1996°, Vol. 1102 of Lecture Notes
in Computer Science, Springer Verlag, New Brunswick, NJ, USA, pp. 269-276.

[5] Baier C., Katoen J. P. (2008): Principles of Model Checking, The MIT Press.
Foreword by Kim Guldstrand Larsen.

[6] Baier C., Katoen J.-P., Hermanns H. (1999): Approximate symbolic model
checking of continuous-time Markov chains, in ‘International Conference on
Concurrency Theory’, pp. 146—-161.

[7] Beer, L., Ben-David, S., Eisner, C., Landver, A. (1996): Rulebase: An industry-
oriented formal verification tool, in ‘Proceedings of the 33rd Conference on
Design Automation (DAC’96)’, ACM Press, Las Vegas, NV, pp. 655—660.

[8] Ben-Ari, M., Manna, Z., Pnueli, A. (1981): The temporal logic of branch-
ing time, in ‘Proc. 8th ACM Symposium on Principles of Programming Lan-
guages’, ACM Press, New York, pp. 164—-176. Por. [9].

168

Logic in Formal Verification of Computer Systems. Some remarks.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

Ben-Ari, M., Manna, Z., Pnueli, A. (1983): ‘The temporal logic of branching
time’, Acta Informatica 20, 207-226. Por. [8].

Bérard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit, A., Petrucci, L., Sch-
noebelen, P. (2001): Systems and Software Verification. Model-Checking Tech-
niques and Tools, Springer.

Bidoit, B. M., Finkel, A., Laroussinie, F., Petit, A., Petrucci, L. , Schnoebelen,
P. (2001): Systems and Software Verification: Model-checking Techniques and
Tools, Springer.

Boyer, R. S., Moore, J. S. (1979): A Computational Logic, Academic Press,
New York.

Boyer, R. S., Moore, J. S. (1988): ‘Integrating decision procedures into heuris-
tic theorem provers: A case study of linear arithmetic’, Machine Intelligence
11, 83-124.

Bradfield, J. C., Stirling, C. (2001): Modal logics and p-calculi: An introduction,
in J. A. Bergstra, A. Ponse, S. A. Smolka, eds, ‘Handbook of Process Algebra’,
Elsevier Science, chapter 4, pp. 293-330.

Brock, B., Hunt, W. (1997): Formally specifying and mechanically verifying
programs for the motorola complex arithmetic processor dsp, in ‘Proceedings of
the IEEE International Conference on Computer Design (ICCD’97)’, pp. 31—
-36.

Cengarle, M. V., Haeberer, A. M. (2000): Towards an epistemology-based
methodology for verification and validation testing, Technical report 0001,
Ludwig-Maximilian’s Universitit, Institut fiir Informatik, Miinchen, Oettingen-
str. 67. 71 pages.

Cimatti, A., Clarke, E., Giunchig lia, E., Giunchig lia, F., Pistore, M., Roveri,
M., Sebastiani, R., Tacchella, A. (2002): NUSMV2: A new opensource tool for
symbolic model checking, in E. Brinksma, K. Larsen, eds, ‘Proceedings of the
14th International Conference on Computer-Aided Verification (CAV 2002)’,
Vol. 2404 of Lecture Notes in Computer Science, Springer-Verlag, Copenhagen,
Denmark, pp. 359—-364.

Cimatti, A., Clarke, E., Giunchig lia, F., Roveri, M. (1999): NUSMV2: A new
symbolic model verifier, in N. Halbwachs, D. Peled, eds, ‘Proceedings of the
11th International Conference on Computer-Aided Verification (CAV ’99)’,
Vol. 1633 of Lecture Notes in Computer Science, Springer- Verlag, Trento, Italy,
pp. 495—499.

Cimatti, A., Clarke, E. M., Giunchig lia, F., Roveri, M. (2000): ‘NUSMV: A new
symbolic model checker’, International Journal on Software Tools for Technol-
ogy Transfer 2(4), 410-425.

169

Kazimierz Trzesicki

[20] Clarke, E. M. (2008): The birth of model checking, in DBLP:conf/spin/5000,
pp. 1-26.

[21] Clarke, E. M., E., E. A. (1982): Design and synthesis of synchronization skele-
tons using branching-time temporal logic, in ‘Logic of Programs, Workshop’,
Vol. 131 of Lecture Notes in Computer Science, Springer-Verlag, London, UK,
pp. 52—-71.

[22] Clarke, E. M., Emerson, E. A., Sistla, A. P. (1983): Automatic verification of
finite state concurrent systems using temporal logic specifications: A practical
approach, in ‘Conference Record of the Tenth Annual ACM Symposium on
Principles of Programming Languages’, Austin, Texas, pp. 117-126.

[23] Clarke, E. M., Emerson, E. A., Sistla, A. P. (1986): ‘Automatic verification of
finite-state concurrent systems using temporal logic specifications’, ACM Trans-
actions on Programming Languages and Systems 8(2), 244-263.

[24] Clarke, E. M., Grumberg, J. O., Peled, D. A. (1999): Model Checking, The MIT
Press.

[25] Clarke, E. M., Grumberg, O., Jha, S., Lu, Y., Veith, H. (2001): Progress on the
state explosion problem in model checking, in ‘Informatics — 10 Years Back.
10 Years Ahead.’, Vol. 2000 of Lecture Notes in Computer Science, Springer-
Verlag, London, UK, pp. 176-194.

[26] Clarke, E. M., Wing, J. M., Alur, R., Cleaveland, R., Dill, D., Emerson, A., Gar-
land, S., German, S., Guttag, J., Hall, A., Henzinger, T., Holzmann, G., Jones,
C., Kurshan, R., Leveson, N., McMillan, K., Moore, J., Peled, D., Pnueli, A.,
Rushby, J., Shankar, N., Sifakis, J., Sistla, P., Steffen, B., Wolper, P., Woodcock,
J., Zave, P. (1996): ‘Formal methods: state of the art and future directions’, ACM
Computing Surveys 28(4), 626—643.

[27] Clarke, E., Wing, J. M. (1996): ‘Formal methods: State-of-the-art and future di-
rections’, ACM Comput. Surv. 28(4), 626—-643. Report by the Working Group
on Formal Methods for the ACM Workshop on Strategic Directions in Comput-
ing Research.

[28] Coe, T., Mathisen, T., Moler, C., Pratt, V. (1995): ‘Computational aspects of the
pentium affair’, IEEE Comput. Sci. Eng. 2(1), 18-31.

[29] Connelly, R., Gousie, M. B., Hadimioglu, H., Ivanov, L., Hoffman, M. (2004):
‘The role of digital logic in the computer science curriculum’, Journal of Com-
puting Sciences in Colleges 19, 5-8.

[30] Courcoubetis, C., M. Yannakakis, M. (1988): Verifying temporal properties
of finite state probabilistic programs, in ‘Proc. 29th Annual Symposium on
Foundations of Computer Science (FOCS’88)’, IEEE Computer Society Press,
pp. 338—-345.

170

Logic in Formal Verification of Computer Systems. Some remarks.

[31]

[32]

[33]
[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Daskalopulu, A. (2000): Model checking contractual protocols, in J. Breuker,
R. Leenes, R. Winkels, eds, ‘Legal Knowledge and Information Systems’, JU-
RIX 2000: The 13th Annual Conference, IOS Press, Amsterdam, pp. 35-47.
Dijkstra, E. W. (1968): Notes on structured programming, in E. W. D. O.-
J. Dahl, C. A. R. Hoare, eds, ‘Structured Programming’, Academic Press, Lon-
don, pp. 1-82.

Dijkstra, E. W. (1989): In reply to comments. EWD1058.

Dill, D. L. (1996): The mur¢ verification system, in R. Alur, T. Henzinger, eds,
‘Proceedings of the 8th International Conference on Computer Aided Verifica-
tion (CAV ’96)’, Vol. 1102 of Lecture Notes in Computer Science, Springer-
Verlag, New Brunswick, NJ, pp. 390—-393.

Dill, D. L., Drexler, A. L., Hu, A. J., Yang, C. H. (1992): Protocol verification
as a hardware design aid, in ‘Proceedings of the 1992 IEEE International Con-
ference on Computer Design: VLSI in Computer and Processors ICCD’92)’,
IEEE Computer Society, Cambridge, MA, pp. 522-525.

Emerson, E. A. (2008): The beginning of model checking: A personal perspec-
tive, in DBLP:conf/spin/5000, pp. 27-45.

Floyd, R. W. (1967): Assigning meanings to programs, in J. T. Schwartz,
ed., ‘Mathematical Aspects of Computer Science. Proceedings of Symposia in
Applied Mathematics’, Vol. 19, American Mathematical Society, Providence,
pp- 19-32.

Giunchig lia, F., Traverso, P. (1999): Planning as model checking, in ‘Proceed-
ings of the Fifth European Workshop on Planning, (ECP’99)’, Springer, pp. 1-
20.

Gordon, M., Melham, T. (1993): Introduction to HOL: A Theorem Proving En-
vironment for Higher Order Logic, Cambridge University Press.

Grumberg, O., Veith, H., eds (2008): 25 Years of Model Checking - History,
Achievements, Perspectives, Vol. 5000 of Lecture Notes in Computer Science,
Springer.

Hansson, H., Jonsson, B. (1994): ‘A logic for reasoning about time and reliabil-
ity’, Formal Aspects of Computing 6, 512-535.

Hasle, P. E. V., @hrstrgm, P. (2004): Foundations of temporal logic. The WW W-
site for Arthur Prior, http://www.kommunikation.aau.dk/prior/index2.
htm.

Heath, J., Kwiatowska, M., Norman, G., Parker, D., Tymchysyn, O. (2006):
Probabalistic model checking of complex biological pathways, in C. Priami, ed.,
‘Proc. Comp. Methods in Systems Biology, (CSMB’06)’, Vol. 4210 of Lecture
Notes in Bioinformatics, Springer, pp. 32-47.

171

Kazimierz Trzesicki

[44]

[45]

[46]

[47]

(48]
[49]
[50]
[51]
[52]

[53]

[54]

[55]
[56]

[57]

172

Henzinger, T., Ho, P., Wong-Toi, H. (1997): ‘A model checker for hybrid sys-
tems’, Int. J. Softw. Tools Technol. Transfer 1(1/2), 110-122.

Henzinger, T., Jhala, R., Majumdar, R., Sutre, G. (2003): Software verification
with BLAST, in T. Ball, S. Rajamani, eds, ‘Model Checking Software: Proceed-
ings of the 10th International SPIN Workshop (SPIN 2003)’, Vol. 2648 of Lec-
ture Notes in Computer Science, Springer-Verlag, Portland, OR, pp. 235-239.
Hermanns, H., Katoen, J.-P., Meyer-Kayser, J., Siegle, M. (2000): A Markov
chain model checker, in ‘Tools and Algorithms for Construction and Analysis
of Systems’, pp. 347—-362.

Hillston, J. (1996): A Compositional Approach to Performance Modeling, Dis-
tinguished Dissertations in Computer Science, Cambridge University Press,
Cambridge, UK.

Hoare, C. A. R. (1969): ‘An axiomatic basis for computer programming’, Com-
munications of the ACM 12(10), 576-580,583. Réwniez w: [49, 45-58].
Hoare, C. A. R., Jones, C. B. (1989): Essays in Computing Science, Prentice
Hall.

Holzmann, G. (1991): Design and validation of computer protocols, Prentice
Hall, New Jersey.

Holzmann, G. J. (2002): Software analysis and model checking, in ‘CAV’,
pp. 1-16.

Holzmann, G. J., Smith, M. H. (2002): FEAVER 1.0 user guide, Technical re-
port, Bell Labs. 64 pgs.

Holzmann, G., Smith, M. (1999): A practical method for the verification of
event-driven software, in ‘Proceedings of the 21st International Conference on
Software engineering (ICSE ’99), Los Angeles, CA’, ACM Press, New York,
pp. 597-607.

Holzmann, G., Smith, M. (1999): Software model checking. Extracting verifica-
tion models from source code, in J. W. et al., ed., ‘Proceedings of the Joint Inter-
national Conference on Formal Description Techniques for Distributed Systems
and Communication Protocols and Protocol Specification, Testing and Verifica-
tion (FORTE/PSTV ’99)’, Vol. 156, International Federation for Information
Processing, Kluwer, Beijing, China, pp. 481-497.

Hughes, G. E., Cresswell, M. J. (1968): An Introduction to Modal Logic,
Methuen and Co., London.

Huth, M. R. A., D., R. M. (2000): Logic in Computer Science: Modelling and
Reasoning about Systems, Cambridge University Press.

Iosif, R., Sisto, R. (1999): dspin: A dynamic extension of spin, in D. D.
et al., ed., ‘Proceedings of the 5th and 6th International SPIN Workshops’, Vol.

Logic in Formal Verification of Computer Systems. Some remarks.

[58]

[59]

[60]

[61]
[62]
[63]

[64]
[65]

[66]

[67]

[68]

[69]

1680 of Lecture Notes in Computer Science, Springer-Verlag, Trento, Italy and
Toulouse, France, pp. 20-33.

Katoen, J.-P., Khattri, M., Zapreev, 1. S. (2005): A Markov reward model
checker, in ‘Quantitative Evaluation of Systems (QEST)’, pp. 243—-244.
Kaufmann, M., Moore, J. S. (2004): ‘Some key research problems in automated
theorem proving for hardware and software verification’, Rev. R. Acad. Cien.
Serie A. Mat. 98(1), 181—-196.

Kautz, H., Selman, B. (1992): Planning as satisfiability, in ‘ECAI *92: Proceed-
ings of the 10th European conference on Artificial intelligence’, John Wiley &
Sons, Inc., New York, NY, USA, pp. 359-363.

Kroger, F. (1977): ‘A logic of algorithmic reasoning’, Acta Informatica
8(3), 243-266.

Kroger, F. (1987): Temporal Logic of Programs, Springer-Verlag New York,
Inc., New York, NY, USA.

Kroger, F.,, Merz, S. (1991): ‘Temporal logic and recursion’, Fundam. Inform.
14(2), 261-281.

Kroger, F., Merz, S. (2008): Temporal Logic and State Systems, Springer.
Kuntz, M., Siegle, M., Werner, E. (2004): Symbolic performance and depend-
ability evaluation with the tool CASPA.

Kurshan, R. (1995): Computer-Aided Verification of Coordinating Processes:
The Automata-Theoretic Approach, Princeton Series in Computer Science,
Princeton University Press, Princeton, NJ.

Kwiatkowska, M., Norman, G., Parker, D. (2001): PRISM: Probabilistic sym-
bolic model checker, in P. Kemper, ed., ‘Proc. Tools Session of Aachen 2001°,
International Multiconference on Measurement, Modelling and Evaluation of
Computer-Communication Systems, Dortmund, pp. 7-12. Available as Techni-
cal Report 760/2001, University of Dortmund.

Kwiatkowska, M., Norman, G., Parker, D. (2002): Probabilistic symbolic model
checking with PRISM: A hybrid approach, in J.-P. Katoen, P. Stevens, eds,
‘Proc. 8th International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS’02)’, Vol. 2280 of Lecture Notes in Com-
puter Science, Springer, pp. 56—66.

Kwiatkowska, M., Norman, G., Parker, D. (2002): Probabilistic symbolic model
checking with PRISM, in J. Katoen, P. Stevens, eds, ‘Proceedings of the 8th In-
ternational Conference on Tools and Algorithms for Construction and Analysis
of Systems (TACAS 2002)’, Vol. 2280 of Lecture Notes in Computer Science,
Springer-Verlag, Grenoble, France, pp. 52—66. Held as part of the Joint Euro-
pean Conference on Theory and Practice of Software (ETAPS 2002).

173

Kazimierz Trzesicki

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]
[78]

[79]

[80]

[81]

[82]

[83]
[84]
[85]

174

Larson, K., Pettersson, P., Yi, W. (1997): ‘Uppaal in a nutshell’, Int. J. Softw.
Tools. Technol. Transfer 1(1/2), 134—-152.

M. Kaufmann, M., Manolios, P., Moore, J. S. (2000): Computer-Aided Reason-
ing: An Approach, Kluwer Academic Press, Boston.

Manna, Z., A. Pnueli, A. (1992, 1995): The Temporal Logic of Reactive and
Concurrent Systems, Vol. 1: Specification, 2: Safety, Springer-Verlag, New
York.

Manna, Z., Bjgrner, N., Browne, A., Chang, E., Alfaro, L. D., Devarajan, H.,
Kapur, A., Lee, J., Sipma, H. (1994): STEP: The stanford temporal prover,
Technical report, Computer Science Department, Stanford University Stanford,
CA.

Manna, Z., Waldinger, R. (1985): The Logical Basis for Computer Program-
ming, Addison-Wesley.

McMillan, K. L. (1993): Symbolic Model Checking: An approach to the State
Explosion Problem, Kluwer Academic, Hingham, MA.

Miller, A., Donaldson, A., Calder, M. (2006): ‘Symmetry in temporal logic
model checking’, ACM Computing Surveys 38(3).

Naur, P. (1966): ‘Proof of algorithms by general snapshots’, BIT 6(4), 310-316.
Owicki, S. S., Lamport, L. (1982): ‘Proving liveness properties of concurrent
programs’, ACM Trans. Program. Lang. Syst. 4(3), 455-495.

Pnueli, A. (1977): The temporal logic of programs, in ‘Proceedings of the 18th
IEEE-CS Symposium on Foundation of Computer Science (FOCS-77)’, IEEE
Computer Society Press, pp. 46-57.

Pnueli, A. (1981): ‘The temporal semantics of concurrent programs’, Theoreti-
cal Comput. Sci. 13, 45-60.

Pratt, V. R. (1980): ‘Applications of modal logic to programming’, Studia Log-
ica9,257-274.

Queille, J.-P., Sifakis, J. (1982): Specification and verification of concurrent
systems in CESAR, in ‘Proceedings Sth International Symposium on Pro-
gramming’, Vol. 137 of Lecture Notes in Computer Science, Springer-Verlag,
pp- 337-351.

Randell, B. (1973): The Origin of Digital Computers, Springer Verlag.
Rescher, N., Urquhart, A. (1971): Temporal Logic, Springer, Wien, New York.
Rutten, J., Kwiatkowska, M., Norman, G., Parker, D. (2004): Mathemati-
cal Techniques for Analysing Concurrent and Probabilisitic Systems, Vol. 23
of American Mathematical Society, CRM Monograph Series, Centre de
Recherches Mathématiques, Université de Montréal.

Logic in Formal Verification of Computer Systems. Some remarks.

[86] Schneider, K. (2003): Verification of Reactive Systems. Formal Methods and
Algorithms, Texts in Theoretical Computer Science (EATCS Series), Springer-
Verlag.

[87] Schnoebelen, P. (2002): ‘The complexity of temporal logic model checking’,
Advances in Modal Logic 4, 1-44.

[88] Turing, A. M. (1936-37): ‘On computable numbers, with an application to
the Entscheidungsproblem’, Proceedings of the London Mathematical Soci-
ety 42(Series 2), 230-265. Received May 25, 1936; Appendix added August
28; read November 12, 1936; corrections Ibid. vol. 43(1937), pp. 544-546.
Turing’s paper appeared in Part 2 of vol. 42 which was issued in December
1936 (Reprint in: [89]; 151-154). Online version: http://www.abelard.org/
turpap2/tp2-ie.asp.

[89] Turing, A. M. (1965): On computable numbers, with an application to the
Entscheidungsproblem, in M. Davis, ed., ‘The Undecidable’, Raven Press,
Hewlett, NY, pp. 116-151.

[90] Vaandrager F. W.and De Nicola, R. (1990): Actions versus state based logics for
transition systems, in ‘Proc. Ecole de Printemps on Semantics of Concurrency’,
Vol. 469 of Lecture Notes in Computer Science, Springer, pp. 407—-419.

[91] Wang, W., Hidvegi, Z., Bailey, A., Whinston, A. (2000): ‘E-process design and
assurance using model checking’, IEEE Computer 33(10), 48-53.

[92] Yovine, S. (1997): ‘Kronos: A verification tool for real-time systems’, Int. J.
Softw. Tools Technol. Transfer 1(1/2), 123—133.

LOGIKA I FORMALNA WERYFIKACJA SYSTEMOW
KOMPUTEROWYCH. KILKA UWAG.

Streszczenie Do specyfikacji i weryfikacji zaréwno sprzgtu jak i programéw stosowane sa
rézne logiki. Gléwna wada metody teorio-dowodowej weryfikacji jest problem znalezienia
dowodu. Zastosowanie tej metody zaklada aksjomatyzacje logiki. Wtasnosci systemu moga
by¢ sprawdzane za pomoca jego modelu. Model jest zbudowany w jezyku specyfikacji i
sprawdzany automatycznie. Zastosowanie sprawdzania za pomocg modelu zaktada rozstrzy-
galno$¢ zadania. Istnieje wielka réznorodnos$¢ programéw (model checker) do sprawdzania
wlasnosci za pomoca modeli.

Stowa kluczowe: Logika, Wery?kacja, Metoda teorio-dowodowa, Sprawdzanie za pomoca

modelu

Praca wspierana przez grant MNiSW nr 3 T11F 01130.

175

