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PARALLEL FUZZY CLUSTERING FOR LINGUISTIC
SUMMARIES

Abstract: The linguistic summaries have the associated truth value so they can be used
as predicates. We use summaries of the form ”most objects in population P are similar to
oi” to find typical values in population P. Then typical values are used in fuzzy clustering
algorithm. Disadvantage of this algorithm is its complexity. For the purpose of processing
the huge number of data, we decided to use parallel computing mechanism to implement
this algorithm, and run it on the cluster machine. We use MPI (Message Passing Interface)
to communicate between processes, which work on different processors. This paper presents
this parallel algorithm and some results of experiments.
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1. Introduction

In the preceding article [1] we presented the algorithm of clustering objects in object-
oriented database, based on linguistic summaries, according to Yager’s approach
[2,3]. We also introduced the certain modification of Yager’s algorithm which im-
proves the clustering but extremely increases complexity, which is high, in this algo-
rithm without modification. For the purpose of processing the huge number of data,
we decided to use parallel computing mechanism to implement this algorithm, and
use it on the cluster machine. We use MPI (Message Passing Interface) to communi-
cate between processes, which work on different processors. This paper presents this
parallel algorithm and some results of experiments.

The paper is organised as follows. Section 2. describes the linguistic summary.
In Section 3 we describe typical values, and in Section 4. their use for searching
typical clusters is presented. In Section 5. we introduce parallel version of cluster-
ing algorithm. Then in Section 6. we present the results of experiments. Finally, the
conclusion will follow in Section 7.
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2. Linguistic summary

Rasmussen and Yager in [2,3] propose linguistic summary of the form
”Q objects in P are S”. In this paper we will use notation Summary(Q,P,S) to express
that summary. For example linguistic summary can look as follows ”most people are
tall” (Summary(most, people, tall)), ”few tall people are light” (Summary(few, tall
people, light).

Q is the quantity in agreement (a linguistic quantifier as most, few etc.), P is a
data collection and S is called the summarizer (e.g. young, tall), which very often is
a fuzzy predicate.

The truth value τ[0,1], called the measure of validity is associated with a lin-
guistic summary. It provides an indication of how compatible the linguistic summary
with the population is. As a population we mean a fuzzy set of objects. Each object o
in a population P has a degree of membership to P - µP(o) (we will also use symbol
o.µ).

Measure of validity is calculated as the grade of membership of the proportion
of objects in P that satisfy S (eq. 1).

τ = µQ

(
card f (S∩P)

card f (P)

)
(1)

∩ is defined as the minimum aggregation. card f is the fuzzy cardinality of a
fuzzy subset and is defined by equation 2

card f (P) = ∑
oi∈P

µP(oi) (2)

Complexity of calculating the true degree τ of a linguistic summary is O(N), where
N is the number of objects in P.

3. Typicality - typical values

Typicality of an object tells as how much the object is typical in the population. It is
calculated by means of linguistic summary, which like a fuzzy predicate has a truth
value. So we can use it as a predicate. Value of typicality t(oi) (we will use also
syntax oi.t) of object oi is the minimum of membership degree of oi and measure of
validity of summary: ”most objects in P are similar to oi” like in eq. 3

t(oi) = oi.t = min(µ(oi),Summary(most,P,Similar_to(oi))) (3)
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In order to query about typical objects in P, we can establish a new population
typical, which will consist of objects from P with associated typicality. α-cut can
be used to cut off objects with typicality lower than α. Complexity of calculating
typicality for one object is O(N), where N is the number of objects in P. So creating
population typical (calculating all objects in population) has a complexity O(N2).

4. Fuzzy clustering algorithm

This algorithm is based on Rasmussen approach [2]. Algorithm 1 presents an idea of
finding typical clusters using linguistic summaries. In [1] we modified this algorithm
by adding step 4. This gives better clustering results but increases complexity from
O(N2) to O(N3). Practically this complexity depends on the number and size of the
obtained clusters.

Algorithm 1 TypicalClusters(P,Q,Sim)
Require: P− population, Q− function (pointer to function) of fuzzy quantifier, Sim(oi,o j) - similarity

function oi,o j ∈ P
1: For each object o in population count its typicality o.t. Add them all to the population typical,

remember their typicality o.t and membership degree to the original population o.µ.
2: Let the most typical object o′ (∀o ∈ typical : o′.t ≥ o.t) be a seed for a new cluster Ci.
3: Find objects o j from typical that are close to any object of Ci, that is ∃o ∈Ci: Similarity(o j,o)≥

α. Add them to the cluster Ci and remove from typical. Continue until no more objects are added.
The cluster Ci will then constitute a typical cluster.

4: For each object o in typical count its typicality o.t, among objects remaining in typical. In this
calculations we use membership degree that objects had in original population o.µ.

5: To find next cluster repeat from step 2, as long as there are objects in typical, and the most typical
object o′ has a degree of typicality greater or equal than β (o′.t ≥ β).

6: return Clusters C0 . . .Cn {n - number of created clusters}

Clustering Quality

We tested our and Rassmusen algorithms on database formed from pixels of an im-
age. To create the resultant image, we assign colour of the first object in cluster (which
was added to cluster as first) to all pixels from this cluster. We run this algorithm with
factor β = 0 to cluster all pixels. To compare results with original image we use Eu-
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clidean distance metric between colours in RGB space eq. 4.

D(o,r) = ∑
i, j

√
(o[i, j].R− r[i, j].R)2 +(o[i, j].G− r[i, j].G)2 +(o[i, j].B− r[i, j].B)2

(4)
where o and r are original and result image respectively. This metric is chosen

for its computational speed and simplicity.
Rassmusen’s algorithm created 305 clusters and the difference D between result

and original image was equal to 13 745 431. Modified version created 301 clusters
and D was equal to 5 605 994.5 . There is less colours (less created clusters) in
the result image and difference from original is over 2 times less than in algorithm
without modification.

5. Parallel Fuzzy clustering algorithm

This parallel algorithm was implemented and tested on populations with the large
amount of data. In our parallel implementation we use MPI (Message Passing Inter-
face). We execute our algorithm on many processors. One process on each processor.

We have one master process - ”special process designated to manage the pool
of available tasks” and many slaves - ”processes that depend on the master to obtain
work” [4]. Each process is executed on different processor of cluster machine.

In our algorithm there are two situations.
First: when we can divide work among processes and we know that it will take

the same time (the same number of computations). This is when we calculate typi-
cality for objects of population. Then we use static mapping of tasks onto processes.
Each process calculates the part of objects.

Second situation: when we check if object is similar to cluster. Object is similar
to the cluster, if it is similar, to one or more elements of cluster. In optimistic situation,
when object is similar to the first object of the cluster, the computation of similarity is
done only once. In pessimistic situation - when object is not similar to the cluster, we
have to calculate similarity as many as cluster size. To obtain load balancing we use
dynamic mapping of tasks to processors. The master tells slaves which object they
have to check of similarity to the cluster. When slave process returns result to master,
then it receives another task if there are any.

Message in MPI has a tag. We use it to inform other processes what message
is sent. In many situations slaves cannot establish what message will be received. So
it checks (with MPI_Probe) what tag the message has, and does adequate operations
e.g. allocates memory and then receives message.
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The idea of our parallel algorithm is as follows. (Algorithms 2 and 3 present
in detail master and slave functions. As a function typicality(o,P) we mean
typicality(o,P) = min(µ(o),Summary(most,P,Similar_to(o))))

In our case each process needs all the objects, because computing typicality of
one object requires all other objects. Master packs the population P, and sends it to
all other processes - slaves. The slaves receive packed population and unpack it. So
each process has a copy of data. Then slaves calculate typicality of the part of the
population - each slave different part. Processes in communicator have identifiers
from 0 to p−1 where p is number of processors. In our case process with identifier 0
becomes master. If N is the population size (number of objects), process with identi-
fier pid considers objects starting from the object with index equal to N

p−1 ∗ (pid−1)
ending with index equal to ( N

p−1 ∗ pid)− 1. When N is not divisible by (p− 1) then
master calculates the rest of objects with indices from N− (N mod (p−1)) to N−1
(indices of the population are zero-based). Then each slave sends results to master,
which accumulates them and sends back to all slaves. So each slave can create copy
of the population typical.

All processes create new cluster containing one object - the most typical. Master
saves all clusters in an array. Slaves do not need to keep all clusters. They use only
one actually created cluster.

In the next step, the master sends to each slave index of the object, it have to
calculate, if that object is similar to the cluster, or not. Then slave sends back the
information, and if there are any other objects, it receives another index. This is re-
peated until all objects are checked.

Master sends to all slaves indices of objects that have to be added to cluster, and
removed from typical.

Searching is continued as long as there were any object added to cluster.
If no more objects were added, each slave clears its cluster. All the processes

compute typicality of their part of objects that remain in typical. Master receives
it and accumulates, creates next cluster containing most typical object and so on.
This is continued until there are any objects in typical and most typical object has a
typicality not less than β.

In this algorithm similarity between each two objects is calculated many times.
We had an idea of creating similarity matrix of objects. Such a solution is good with
small populations. In the case when the population size is large, similarity matrix
is too big to fit in memory. For example: if size of the population is 250 000 then
similarity matrix takes the place of 250 0002 ∗ sizeof( f loat) = 250 0002 ∗4 bytes. It
is over 232 GB. At this moment this is too large to fit into memory. On the other hand
keeping it on hard disk is not profitable because of disk access time.
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Algorithm 2 TypicalClustersMaster(P, p,Q,Sim,A,B)
Require: P− population, p− number of processes (p≥ 2), Q− pointer to function of fuzzy quantifier,

Sim(oi,o j) - similarity function oi,o j ∈ P, A, B - functions counting value of factors α and β

1: pack population P and send it to all slaves
2: if P.size mod (p−1) > 0 then
3: for i = N− (N mod (p−1)) to N−1 do
4: oi.t = typicality(oi,P) typical.Add(oi)
5: end for
6: end if
7: receive from slaves and save in typical typicality of objects they calculated
8: send typicality of all objects to all slaves
9: find o′ the most typical object {the object with the highest degree of typicality}

10: α = A(o′.t) β = B(o′.t) k = 0
11: while typical.Size > 0 and o′.t ≥ β do
12: create new cluster Ck
13: Ck.Add(o′) typical.Remove(o′)
14: repeat
15: send to each slave a consecutive index of object {Slave counts similarity of this object to the

cluster Ck}
16: while any slave count similarity do
17: receive from any slave sx similarity of object oi and if it is similar save i in the array Inds
18: if there are indices, that wasn’t send then
19: send consecutive index i to slave sx.
20: end if
21: end while
22: send to all slaves array Inds.
23: for all objects oi : i ∈ Inds do
24: Ck.Add(oi) typical.Remove(oi)
25: end for
26: until Tab.Size > 0{there where any objects added to cluster Ck}
27: if typical.Size < p then
28: send message with tag=11 to redundant slaves {Slave exits.}
29: p = p− typical.Size send p to other slaves
30: end if
31: N = typical.size
32: if N mod (p−1) > 0 then
33: for i = N− (N mod (p−1)) to N-1 do
34: oi.t = typicality(oi, typical)
35: end for
36: end if
37: receive from slaves and save in typical typicality of objects they calculated
38: send typicality of all objects to all slaves
39: find o′ the most typical object
40: α = A(o′.t) β = B(o′.t) k = k +1;
41: send α and index of o′ to all slaves
42: end while
43: return clusters C0 . . .Cn
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Algorithm 3 TypicalClustersSlave(p, pid,Q,Sim)
Require: p− number of processes (p≥ 2), pid - rank of this process, Q− pointer to function of quantity

in agreement,Sim(oi,o j) - similarity function oi,o j ∈ O
1: receive and unpack population original
2: N = original.Size
3: for all oi, such that N

p−1 ∗ (pid −1)≤ i≤ N
(p−1) ∗ pid do

4: T [i] = typicality(oi,original)
5: end for
6: send filled part of T to master
7: receive from master index m of the most typical object o′ = om
8: receive from master array T {typicality of all objects}
9: create new population typical from objects of original and typicality from array T

10: create new cluster C with most typical object o′

11: remove o′ from typical
12: repeat
13: test for a message from master
14: if message.tag = 11 then
15: exit;
16: else if message.tag = 4 then
17: receive α from Master
18: else if message.tag = 6 then
19: receive index i from master
20: check if oi is similar to the cluster C and send similarity to master
21: else if message.tag = 7 then
22: receive array Inds from master
23: if Inds.size > 0 then
24: for all objects oi : i ∈ Inds do
25: C.Add(oi); typical.Remove(oi);
26: end for
27: else {there are no objects similar to cluster.}
28: if typical.size < p−1 then
29: receive p from master or exit if message.tag = 11
30: end if
31: end if
32: N=typical.Size
33: for all oi ∈ typical, such that N

p−1 ∗ (pid −1)≤ i≤ N
(p−1) ∗ pid do

34: T [i] = typicality(oi, typical)
35: end for
36: send filled part of T to master
37: receive from master index m of the most typical object o′ = om
38: receive from master array T {typicality of all objects in typical}
39: for all oi ∈ typical do
40: oi.t = T [i]
41: end for
42: C.clear C.Add(o′) typical.Remove(o′)
43: end if
44: until message.tag 6= 11
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6. Results of experiments

We tested our algorithm on Compute Cluster - ”mordor2” at Faculty of Computer
Science of Bialystok Technical University. There are 16 compute nodes, each of 2
quad-core processors Intel Xeon X5355 (2660 MHz) with 4GB RAM. The program
is implemented in C++, and we use Intel compiler.

We performed three experiments with three various population size. In the first
experiment, there was 65 536 objects (44 192 unique values of attribute on witch sim-
ilarity function was defined) and 190 clusters were created. In the second 301 clusters
from population of 262 144 objects (69 997 unique values). The last experiment was
performed on population 1 064 000 objects. This time only 28 clusters were created
, because there was only 254 unique values of attribute. We used factors: αp = 75%
of the most typical value (α = o′.t ∗75%) and β = 0 to cluster all the objects. Figures
1, 2 ,3 show speedup of our parallel algorithm for those three experiments and Table
1 contains time in seconds of performing each of this three experiments.

In all figures p is the processors number, T1(p) - is time of processing first ex-
periment on p processors, T2(p) and T3(p) second and third experiment accordingly.
T (1) - is the time of running program sequentially on one processor. Speedup of
algorithm is calculated by formula in eq. 5.

S(p) =
T (1)
T (p)

(5)

Analysing the charts we can say that there is no speedup for 2 processors because
of algorithm architecture. One of two processes is master and it doesn’t take part in
calculations. From 5 processors to 20 processors (fig. 2) we can say that speedup is
close to linear speedup. It grows slower for greater number of processes as a conse-
quence of Amdahl’s law. It starts to saturate earlier (with less number of processors)
for smaller population (fig. 1 and later for greater population (fig. 3). Like in fig. 3 the
chart locally drops. It may be caused by load imbalance - there are situations when
master participates in calculations or not, depending on the number of processors and
actual number of objects. It is noteless with smaller population (fig. 1). The time of
running program on one processor in third experiment is 73 638s. that is over 20
hours, while on 48 processors 1 760.04s - somewhat less than half an hour.

7. Conclusion

The parallel version of this algorithm allows to deal with large data bases in ac-
ceptable time. The more objects we have, the more processors we can use without
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Table 1. Time of performing experiments

p T1(p) T2(p) T3(p) p T1(p) T2(p) T3(p)
1 536 8833 104 066 25 28.024 392.796 2862.57
2 542.771 8827.04 111943 26 26.6639 398.204 3086.98
3 440.099 6917.32 76519.8 27 26.1264 384.812 2973.57
4 369.37 5938.48 41201 28 25.2003 375.33 2885.53
5 294.841 2232.53 16613.9 29 24.4827 341.483 2482.13
6 160.135 1786.62 13615 30 23.8073 331.278 2425.07
7 93.7401 1495.43 11613.9 31 23.3445 341.783 2724.54
8 81.7998 1372.49 11135.7 32 22.8769 330.902 2649.3
9 72.1456 1104.92 24866.1 33 22.1609 321.069 2430.05

10 63.8581 991.029 14712.6 34 21.681 310.859 2358.91
11 57.6498 899.491 6788.27 35 21.3022 304.901 2303.22
12 52.7288 820.887 6253.87 36 20.7538 279.391 3606.57
13 48.8878 761.468 5829.14 37 20.7321 305.128 2282.51
14 45.498 746.249 5958.49 38 20.3226 299.343 2219.04
15 43.1952 691.14 9235.31 39 20.0423 293.134 2162.86
16 40.291 684.79 5434.6 40 19.6307 284.499 2113.97
17 38.0155 572.078 4291.65 41 19.1846 263.208 1953.81
18 36.14 541.105 4086.26 42 18.8672 257.352 1910.82
19 34.937 510.345 3774.39 43 18.8057 242.463 1965.2
20 33.3961 484.716 6627.98 44 18.4836 260.475 1921.94
21 31.7411 493.387 3862.84 45 18.3377 232.151 1879.08
22 30.6009 495.573 3874.26 46 18.1134 250.914 1834.79
23 29.4827 476.159 3699.19 47 17.8429 246.288 1794.08
24 28.4549 456.875 3556.91 48 17.6971 242.1 1760.04
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Fig. 1. Algorithm speedup for population of 65 536 objects

Fig. 2. Algorithm speedup for population of 262 144 objects

efficiency degradation. Our algorithm is not perfect. We use only blocking commu-
nication operations and there is moment of poor load balancing (master should more
participate in computation). There are also messages that master sends to all pro-
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Fig. 3. Algorithm speedup for population of 1 064 000 objects

cesses. It would be better to use collective communications operations. We have not
implemented those yet.

We didn’t make parallel linguistic summaries, but only clustering algorithm,
because complexity of the former is O(N). Object-oriented databases, that are subject
of our interest, allow creating object attributes that are collections of other objects or
other data like multimedia. In that situation, predicate defined on such an attribute or
group of attributes may be very time consuming. Next we plan to implement parallel
linguistic summaries to deal with such databases.
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PODSUMOWANIA LINGWISTYCZNE
Z RÓWNOLEGŁYM GRUPOWANIEM ROZMYTYM

Streszczenie: Z podsumowaniem lingwistycznym, jak i z predykatem rozmytym związana
jest wartość prawdy. Możemy więc podsumowań lingwistycznych używać jako predyka-
tów rozmytych. Podsumowanie postaci ”większość obiektów w populacji P jest podobna do
obiektu oi wykorzystać możemy do znajdowania typowych wartości w populacji P, które to
wykorzystuje rozmyty algorytm grupujący. Wadą tego algorytmu jest jego duża złożoność
obliczeniowa. W celu przetwarzania dużej liczby danych zaimplementowaliśmy ten algo-
rytm równolegle, korzystając ze standardu MPI do komunikacji między procesami działa-
jącymi na różnych procesorach. W tej pracy przedstawiamy algorytm równoległy i wyniki
eksperymentów.

Słowa kluczowe: podsumowania lingwistyczne, grupowanie rozmyte, programowanie
równoległe

Artykuł zrealizowano w ramach pracy badawczej S/WI/2/08.
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