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Abstract: In the paper, comparative analysis of ensembles of dipolar neural networks and
regression trees was conducted. The techniques are based on the dipolar criterion function.
Appropriate formation of dipoles (pairs of feature vectors) allows using them for analysis of
censored survival data. As the result the methods return aggregated Kaplan-Meier survival
function. The results, obtained by neural networks and regression trees based ensembles, are
compared by using Brier score and direct and indirect measures of predictive accuracy.
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1. Introduction

In real data problems, the question about the future behavior of a given patient arises.
Such situation is very common in survival data, in which the failure time is under
investigation. In medical data, the failure is often defined as death or disease relapse
and time is measured from the initial event, e.g. surgery. Analyzing the survival data
requires taking into account censored observations, for which the exact failure time
is unknown. The follow-up time for such patients gives us only the information, that
the failure did not occur before.

Besides statistical techniques (the most common Cox’s proportional hazards
model [2]), which require some conditions to fulfill, other non-statistical methods
are developed. Artificial neural networks and regression trees belong to the most
popular ones. Recently, also methods concerning the use of ensemble of regression
trees in prognosis of survival time appear. Their application allows receiving the tool
unaffected by small changes in dataset, what is particularly important in discovering
the risk factors. Hothorn et al. [5] proposes boosting survival trees to create aggre-
gated survival function. Krȩtowska [11] developed the approach by using the dipolar
regression trees or dipolar neural networks [12] instead of the structure proposed in
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[5]. The technique proposed by Ridgeway [15] allows minimizing the partial like-
lihood function (boosting Cox’s proportional hazard model). The Hothorn et al. [6]
developed two approaches for censored data: random forest and gradient boosting.

The paper is organized as follows. In Section 2. the introduction to survival data
as well as Kaplan-Meier survival function are presented. Section 3. introduces the
idea of dipoles and in Section 4. two dipoles based structures: neural networks and
regression trees are described. In Section 5. the algorithm of building the ensemble of
predictors is presented. Experimental results are presented in Section 7. They were
carried out on the base of two real datasets. The first one contains the feature vec-
tors describing the patients with primary biliary cirrhosis of the liver [3], the other
includes the information from the Veteran’s Administration lung cancer study [7].
Section 8. summarizes the results.

2. Kaplan-Meier survival function

We have learning sample L = (xi, ti,δi), i = 1,2, ...,n, where xi is N-dimensional
covariates vector, ti - survival time and δi - failure indicator, which is equal to 0 for
censored cases and 1 for uncensored ones.

The distribution of random variable T , which represents the true survival time,
may be described by the marginal probability of survival up to time t > 0 (S(t) =
P(T > t)). The estimation of survival function S(t) may be done by using the Kaplan-
Meier product limit estimator [8], which is calculated on the base of learning sample
L and is denoted by Ŝ(t):

Ŝ(t) = ∏
j|t( j)≤t

(
m j−d j

m j

)
(1)

where t(1) < t(2) < .. . < t(D) are distinct, ordered survival times from the learning
sample L, in which the event of interest occurred, d j is the number of events at time
t( j) and m j is the number of patients at risk at t( j) (i.e., the number of patients who
are alive at t( j) or experience the event of interest at t( j)).

The ’patients specific’ survival probability function is given by S(t|x) = P(T >
t|X = x). The conditional survival probability function for the new patient with co-
variates vector xnew is denoted by Ŝ(t|xnew).

3. Dipoles

The methodology used during the learning process of artificial neural network and
induction of regression tree bases on the concept of dipole [1]. The dipole is a pair of
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different covariate vectors (xi,x j) from the learning set. Mixed and pure dipoles are
distinguished. Mixed dipoles are formed between objects that should be separated,
while pure ones between objects that are similar from the point of view of the ana-
lyzed criterion. The aim is to find such a hyper-plane H(w,θ) that divides possibly
high number of mixed dipoles and possibly low number of pure ones. It is done by
minimization of the dipolar criterion function.

Two types of piece-wise linear and convex penalty functions ϕ
+
j (v) and ϕ

−
j (v)

are considered:

ϕ
+
j (v) =

{
δ j−< v,y j > if < v,y j >≤ δ j

0 if < v,y j >> δ j
(2)

ϕ
−
j (v) =

{
δ j+ < v,y j > if < v,y j >≥−δ j

0 if < v,y j ><−δ j
(3)

where δ j is a margin (δ j = 1), y j = [1,x1, . . . ,xN ]T is an augmented covariate vector
and v = [−θ,w1, . . . ,wN ]T is an augmented weight vector. Each mixed dipole (yi,y j),
which should be divided, is associated with function ϕm

i j(v) being a sum of two func-
tions with opposite signs (ϕm

i j(v) = ϕ
+
j (v)+ ϕ

−
i (v) or ϕm

i j(v) = ϕ
−
j (v)+ ϕ

+
i (v)). For

pure dipoles that should remain undivided we associate function: ϕ
p
i j(v) (ϕp

i j(v) =
ϕ

+
j (v)+ϕ

+
i (v) or ϕc

i j(v) = ϕ
−
j (v)+ϕ

−
i (v)). A dipolar criterion function is a sum of

the penalty functions associated with each dipole:

Ψd(v) = ∑
( j,i)∈Ip

αi jϕ
p
i j(v)+ ∑

( j,i)∈Im

αi jϕ
m
i j(v) (4)

where αi j determines relative importance (price) of the dipole (yi,y j), Ip and Im are
the sets of pure and mixed dipoles, respectively.

The rules of dipoles formations depend on the purpose of our research. Assum-
ing that the analysis aims at dividing the feature space into such areas, which would
include the patients with similar survival times, pure dipoles are created between pairs
of feature vectors, for which the difference of failure times is small, mixed dipoles
- between pairs with distant failure times. Taking into account censored cases the
following rules of dipole construction can be formulated:

1. a pair of feature vectors (xi,x j) forms the pure dipole, if
- σi = σ j = 1 and |ti− t j|< η

2. a pair of feature vectors (xi,x j) forms the mixed dipole, if
- σi = σ j = 1 and |ti− t j|> ζ

- (σi = 0,σ j = 1 and ti− t j > ζ) or (σi = 1,σ j = 0 and t j− ti > ζ)
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Parameters η and ζ are equal to quartiles of absolute values of differences between
uncensored survival times. The parameter η is fixed as 0.2 quartile and ζ - 0.6.

As the result of minimization of the dipolar criterion function we receive the val-
ues of parameters v of the hyper-plane. Depending on the set of dipoles, parameters
v describe the neuron in artificial neural network or internal node in regression tree.

4. Individual prognostic structures

Two prognostic structures are considered in the paper: dipolar neural network [10]
and regression tree [9]. The basic element of the structures (that is binary neurons
and internal nodes) are characterized by the hyper-plane with parameters v:

z = f (y,v) =
{

1 if vT y≥ 0
0 if vT y < 0

(5)

From the geometrical point of view an element divides a feature space into two sub-
spaces by using hyperplane H(v) = {y : vT y = 0}. If the vector y is situated on the
positive side of the hyper-plane, the element returns 1 (z = 1).

Neural network

A dipolar neural network model, considered in the paper, consists of two layers: input
and output layer. The neurons weight values are obtained by sequential minimization
of the dipolar criterion functions. The function is built from all the pure dipoles and
those mixed dipoles which were not divided by previous neurons. The learning phase
is finished when all the mixed dipoles are divided. The other, optimization phase,
aims at distinguishing and enlargement of prototypes (i.e. active fields which contain
the largest number of feature vectors x) and at reduction of redundant neurons [10].

The output layer of R binary neurons divided the N-dimensional feature space
into disjoint regions - active fields (AF). Each region is represented by R-dimensional
output vector: z = [z1,z2, . . . ,zR]T , where zi ∈ {0,1}. As the result, the set of active
fields SAF = {AF1;AF2; . . . ,AFik} is received. Each active field AF j contains the
subset L j of observations from the learning sample L.

Regression tree

Hierarchical and sequential structure of a regression tree recursively partitions the
feature space. The tree consists of terminal nodes (leaves) and internal (non-terminal)
nodes. An internal node contains a split (5), which tests the value of an expression
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of the covariates. Each distinct outcome (0 or 1) of the test generates one child node,
which means that all non-terminal nodes have two child nodes. A terminal node gen-
erates no descendant. The function in a given node is designed on the base on those
feature vectors that have reached the node. The induction of survival tree is stopped
if one of the following conditions is fulfilled: 1) all the mixed dipoles are divided; 2)
the set that reach the node consists of less than 5 uncensored cases.

Each terminal node represents one region in the N-dimensional feature space.
Similarly to the neural network results, the leave j contains the subset L j of observa-
tions from the learning sample L.

5. Ensembles of predictors

Let assume, that we have a set of k dipolar predictors (dipolar neural networks or
dipolar regression trees): DPi, i = 1,2, . . . ,k. The set is called ensemble when each
of k predictors is generated on base of k learning samples (L1,L2, . . . ,Lk) drawn with
replacement from a given sample L. As the result of each dipolar predictor DPi, the
set SLi = {L1

i ;L2
i ; . . . ,Lki

i } of observations from learning sample Li. Having a new co-
variate vector xnew, each DPi, i = 1,2, . . . ,k returns the subset of observations Li(xnew)
which is connected with region (or active field in case of neural networks), to which
the new vector belongs. Having k sets Li(xnew), aggregated sample LA(xnew) is built
[5]:

LA(xnew) = {L1(xnew);L2(xnew); . . . ;Lk(xnew)}

The aggregated conditional Kaplan-Meier survival function, calculated on the base
of set LA(xnew) can be referred to as ŜA(t|xnew).

The algorithm for receiving the aggregated survival function is as follows:

1. Draw k bootstrap samples (L1,L2, . . . ,Lk) of size n with replacement from L
2. Induction of dipolar predictor DPi based on each bootstrap sample Li, i =

1,2, . . . ,k
3. Build aggregated sample LA(xnew) = {L1(xnew);L2(xnew), . . . ,Lk(xnew)}
4. Compute the Kaplan-Meier aggregated survival function for a new observation

xnew: ŜA(t|xnew).

6. Measures of predictive accuracy

Beside the problems concerning the use of censored data in the process of building
the prediction tool, the question how to evaluate the prediction ability of received
models appears. The lack of exact failure times for a part of data causes that the
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classical measures based on difference between empirical and theoretical values can
not be used. Instead of them, other, censoring oriented, measures are proposed.

One of them is the Brier score introduced by Graf at al. [4]. The Brier score as
a function of time is defined by

BS(t) = 1
n ∑

N
i=1(Ŝ(t|xi)2I(ti ≤ t ∧σi = 1)Ĝ(ti)−1 +

(1− Ŝ(t|xi))2I(ti > t)Ĝ(t)−1) (6)

where Ĝ(t) denotes the Kaplan-Meier estimator of the censoring distribution. It is
calculated on the base of observations (ti,1− δi). I(condition) is equal to 1 if the
condition is fulfilled, 0 otherwise. The BS equal to 0 means the best prediction.

The Brier score belongs to direct estimators of prediction ability, because it
uses the information explicitly from the data. Another direct approach is proposed
by Schemper and Henderson [14]. The predictive accuracy (without covariates), ex-
pressed by absolute predictive error (APE), at each distinct failure time t( j) is defined
as:

M̂(t( j)) = 1
n ∑

n
i=1

[
I(ti > t( j))(1− Ŝ(t( j)))+δiI(ti ≤ t( j))Ŝ(t( j))+

(1−δi)I(ti ≤ t( j))
{

(1− Ŝ(t( j)))
Ŝ(t( j))
Ŝ(ti)

+ Ŝ(t( j))(1−
Ŝ(t( j)

Ŝ(ti)
)
}]

(7)

The measure with covariates (M̂(t( j)|x)) is obtained by replacing Ŝ(t( j)) by Ŝ(t( j)|x)
and Ŝ(ti) by Ŝ(ti|x). To receive overall estimators of APE with (D̂x) and without co-
variates (D̂) the weighed averages of estimators over failure times are calculated:

D̂ = w−1
∑

j
Ĝ(t( j))

−1d jM̂(t( j)) (8)

D̂x = w−1
∑

j
Ĝ(t( j))

−1d jM̂(t( j)|x) (9)

where w = ∑ j Ĝ(t( j))−1d j, d j is the number of events at time t( j) and Ĝ(t) denotes the
Kaplan-Meier estimator of the censoring distribution (see equation 6).

The indirect estimation of predictive accuracy was proposed by Schemper [13].
In the approach the estimates (without M̃(t( j)) and with covariates M̃(t( j)|x)) are de-
fined by

M̃(t( j)) = 2Ŝ(t( j))(1− Ŝ(t( j))) (10)

M̃(t( j)|x) = 2n−1
∑

i
Ŝ(t( j)|xi)(1− Ŝ(t( j))|xi) (11)
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The overall estimators of predictive accuracy with (D̃S,x) and without (D̃S) co-
variates are calculated similarly to the estimators D̂x and D̂. The only change is re-
placing M̂(t( j)) and M̂(t( j)|x) by M̃(t( j)) and M̃(t( j)|x) respectively.

Based on the above overall estimators of absolute predictive error, explained
variation can be defined as:

ṼS =
D̃S− D̃S,x

D̃S
(12)

and

V̂ =
D̂− D̂x

D̂
(13)

7. Experimental results

All the experiments were performed using the ensemble of 200 dipolar predictors
DP. The measures of predictive accuracy were calculated on the base of learning
sample L. To calculate the aggregated survival function for a given example x from
the learning set L, only such DPi (i = 1,2, . . . ,200) were taken into consideration,
for which x was not belonged to the learning set Li (i.e. x did not participate in the
learning process of the DPi).

The analysis was conducted on the base on two datasets. The first one is from the
Mayo Clinic trial in primary biliary cirrhosis (PBC) of the liver conducted between
1974 and 1984 [3]. 312 patients participated in the randomized trial. Survival time
was taken as a number of days between registration and death, transplantation or
study analysis time in July 1986. Patients are described by the following features:
age(AGE), sex, presence of edema, logarithm of serum bilirubin [mg/dl] (LOGBILL),
albumin [gm/dl] (ALBUMIN), logarithm of prothrombin time [seconds], histologic
stage of disease. Dataset contains 60 per cent of censored observations.

In table 1, the results for PBC dataset are presented. Three different measures
of predictive accuracy were calculated for three methods: Kaplan-Meier estimator,
ensemble of DNN (dipolar neural network) and ensemble of DRT (dipolar regres-
sion tree). As we can see the absolute predictive error for K-M estimator (which is
equivalent to the model without covariates) is equal to 0.37 and is higher than for
other two methods (0.29 - indirect approach (0.26 - direct approach) for EDNN and
0.23(0.22) for EDRT). Comparing the results received for EDNN and EDRT we can
noticed that for the model with all covariates as well as for model with only one
feature the predictive measures are better for EDRT. Brier score for EDNN is equal
to 0.17 and is bigger by 0.1 than Brier score for EDRT. In case of indirect and di-
rect APE - explained variation for EDNN is smaller (0.22 (0.26)) than for EDRT -
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0.39(0.41). Taking into account individual factors, the order of them is the same for
both methods. The most important prognostic factor is logarithm of serum bilirubin
for which the explained variation is equal to 0.25 (0.25) and 0.34 (0.35) for EDNN
and EDRT respectively. The influence of age and albumin for prediction of survival
probability is less important.

Table 1. Measures of predictive accuracy for PBC dataset

Model BS Indirect APE/ Direct APE/
(12years) Explained variation Explained variation

K-M Estimator 0.23 0.37 0.37
Ensemble of DNN
all covariates 0.17 0.29/0.22 0.27/0.26
AGE 0.22 0.36/0.036 0.36/0.038
LOGBILL 0.17 0.28/0.25 0.28/0.25
ALBUMIN 0.22 0.33/0.11 0.33/0.12
Ensemble of DRT
all covariates 0.16 0.23/0.39 0.22/0.41
AGE 0.18 0.33/0.11 0.33/0.12
LOGBILL 0.16 0.24/0.34 0.24/0.35
ALBUMIN 0.18 0.28/0.24 0.28/0.24

The other analyzed data set contains the information from the Veteran’s Admin-
istration (VA) lung cancer study [7]. In this trial, male patients with advanced inop-
erable tumors were randomized to either standard (69 subjects) or test chemotherapy
(68 subjects). Only 9 subjects from 137 were censored. Information on cell type (0 -
squamous, 1 - small, 2 - adeno, 3 - large) - CELL TYPE, prior therapy, performance
status at baseline (Karnofsky rating - KPS), disease duration in months (TIME) and
age in years at randomization (AGE), was available.

The measures of predictive accuracy for VA lung cancer data was shown in table
2. The unconditional absolute predictive error is 0.335. The ensemble of DNN, built
on the base of all the covariates, reduces the error by 0.035 or 0.045 for indirect and
direct approach respectively. The ensemble of DRT reduces the error by 0.145 and
0.185. As for PBC dataset case the results are better for EDRT, but the order of prog-
nostic factors is the same. The most important prognostic factor is KPS (error equal
to 0.3 (029) and 0.25(0.25), for EDNN and EDRT respectively). Explained variation
is 11 (13) and 25 (25) per cent. Taking into account the EDNN, other variables have
the marginal influence on the prediction of survival probability, but in case of EDRT
also the cell type is quite important (explained variation equal to 13 (12) per cent).
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Table 2. Measures of predictive accuracy for VA lung cancer data

Model BS Indirect APE/ Direct APE/
(100 days) Explained variation Explained variation

K-M Estimator 0.24 0.335 0.335
Ensemble of DNN
all covariates 0.18 0.3/0.11 0.29/0.14
AGE 0.24 0.32/0.034 0.33/0.013
CELL TYPE 0.24 0.33/0.002 0.33/0.006
KPS 0.19 0.3/0.11 0.29/0.13
TIME 0.24 0.33/0.003 0.33/0.003
Ensemble of DRT
all covariates 0.09 0.22/0.35 0.18/0.46
AGE 0.2 0.3/0.09 0.3/0.1
CELL TYPE 0.19 0.29/0.13 0.3/0.12
KPS 0.18 0.25/0.25 0.25/0.25
TIME 0.22 0.31/0.07 0.31/0.07

8. Conclusions

In the paper, prognostic abilities of two ensemble of dipolar predictors (neural net-
works and regression trees) were compared. The prognostic ability of the models
was verified by several measures, such as the Brier score and direct and indirect es-
timators of absolute predictive errors: D̃S,x, D̂x. In all cases the measures were better
for ensemble of dipolar regression trees then for ensemble of neural networks. For
VA lung cancer data the explained variation was equal to 0.35 (0.46) for EDRT and
0.11 (0.14) (indirect (direct approach)) for EDNN. Similarly for PBC dataset, the ex-
plained variation received for EDRT - 0.39 (0.41) was greater than for EDNN - 0.22
(0.26). It worth noticed than two method distinguished the same risk factors. The
feature that influence the survival the most is Karnofsky rating in case of VA lung
cancer data and serum bilirubin for PBC dataset. The results suggest that the way of
creating the consecutive hyper-planes in regression trees approach allows using the
information from the given learning sample in the better manner.
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ZDOLNOŚCI PROGNOSTYCZNE KOMITETÓW
BAZUJĄCYCH NA DIPPOLACH - ANALIZA

PORÓWNAWCZA

Streszczenie W pracy przedstawiona została analiza porównawcza własności prognostycz-
nych komitetów bazujących na sieciach neuronowych oraz drzewach regresyjnych. Two-
rzenie kolejnych sięć przestrzeni cech w obu metodach polega na minimalizacji odpowied-
nio skonstruowanego kryterium dipolowego. Do porównania metod wykorzystano indeks
Brier’a oraz pośrednią i bezpośrednią miarę jakości predykcji. Eksperymenty wykonane
zostały w oparciu o dwa rzeczywiste zbiory danych: pacjentów z pierwotną marskością
żółciową wątroby oraz z rakiem płuc. W obu przypadkach wyniki otrzymane dla komitetu
drzew regresyjnych były lepsze niż dla komitetu sieci neuronowych. Dotyczyło to zarówno
badania jakości całego modelu, do którego wzięte zostały wszystkie dostępne w zbiorze ce-
chy, jak też jakości prognostycznej pojedynczych cech. Natomiast uszeregowanie poszcze-
gólnych cech jako czynników ryzyka było podobne w obu metodach. Podsumowując można
powiedzieć, że sposób podziału przestrzeni cech zaproponowany w drzewach regresyjnych
w lepszy sposób wykorzystuje informacje zawarte w zbiorze uczącym.

Słowa kluczowe: analiza przeżyć, kryterium dipolowe, komitety drzew decyzyjnych, ko-
mitety sieci neuronowych

Artykuł zrealizowano w ramach pracy badawczej W/WI/4/08.
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