
ZESZYTY NAUKOWE POLITECHNIKI BIAŁOSTOCKIEJ 2009
Informatyka – Zeszyt 4

Joanna Gościk1, Józef Gościk2

NUMERICAL EFFICIENCY OF THE CONJUGATE
GRADIENT ALGORITHM - SEQUENTIAL

IMPLEMENTATION

Abstract: In the paper we report on a second stage of our efforts towards a library design
for the solution of very large set of linear equations arising from the finite difference ap-
proximation of elliptic partial differential equations (PDE). Particularly a family of Krylov
subspace iterative based methods (in the paper exemplified by the archetypical Krylov space
method - Conjugate Gradient method) are considered. The first part of the paper describes
in details implementation of iterative algorithms for solution of the Poisson equation which
formulation has been extended to the three-dimensional. The second part of the paper is fo-
cused on the performance measurement of the most time-consuming computational kernels
of iterative techniques executing basic linear algebra operations with sparse matrices. The
validation of prepared codes as well as their computational efficiency have been examined
by solution a set of test problems on two different computers.

Keywords: Iterative solvers, Finite difference method, Poisson equation,
Performance of sequential code

1. Introduction

At this time, the search for high performance in a large scale computation is of grow-
ing importance in scientific computing. This is very important due to recent attention
which has been focused on distributed memory architectures with particular interest
in using small clusters of powerful workstations. However, the appearing of mod-
ern multiprocessors platforms demands to resolve a lot of tasks which are addressed
to efficient porting solvers on three different architectures: a sequential machine, a
shared memory machine and on a distributed memory machine. So the key problem
is to understand how the computation aspects of using linear algebra solvers (in our
case - iterative) can affect the optimal execution of code on machines with different
architecture.

For understanding the implication of design choices for systems, and for study-
ing increasingly complex hardware architecture and software systems very important

1 Faculty of Computer Science, Bialystok Technical University, Bialystok, Poland
2 Faculty of Mechanical Engineering, Bialystok Technical University, Bialystok, Poland

47



Joanna Gościk, Józef Gościk

tools are more or less standardized benchmarks. However running for example very
well known Linpack benchmark [1] on complex architectures is not so obvious and
easy in interpretation. The problem was discovered when the execution time of Lin-
pack was studied systematically on different machines (the results and main problems
arise when we tried to estimate performance of the benchmark will be pulished else-
where). This observation in our opinion should be interpreted by misunderstanding
the impacts of different architecture designs. Among them are characteristic differ-
ences in latency between different levels of caches and memory, introduction of si-
multaneous multithreading and single-chip multiprocessors, to mention of few.

In the paper we try to explore some of the main challenges in implementation
and estimation computational efficiency of the executing sequential code. The spe-
cial attention has been paid on credible study of performance in terms of number of
equations. The paper report on continuation of our research described in [2]. So, we
were mainly interested in building and improvement of the software for solving very
large set of linear equations arising from the finite difference approximation of the
elliptic PDE. At the stage the iterative solver module has been rearranged in a such
way which allows flexible operating on separate basic algebra operations as inner
products of two vectors, updating of vectors and the matrix-vector multiplication.

This paper continues as follows. In Section 2 we present the scope of the mathe-
matical formulation of the elliptic PDE as well as results of calculations made by
making use raw, not tuned codes. Our main goal was to prepare validated iterative
solver for systems with large sparse matrices of coefficients. In Section 3 we describe
in details our data structures and results of testing performance on two platforms (in-
cluding one which is installed in WI Bialystok - Mordor2). In Section 4 we present
our results for timing and estimating performance of running different parts of the
solver routines. Finally, in Section 5 we summarize our efforts and formulate direc-
tion of further research.

2. Software for the Poisson equation solution

In mathematical formulation we confined ourselves to the one of the simplest elliptic
boundary value problem described by the Poisson equation in a classical form (for
the constant coefficients)

∇2u(x) = f (x) ∀ (x) ∈Ω (1)

where u is a continuous function, ∇2 is the Laplace operator and f is specified in
domain Ω forcing (source). The problem (1) is considered with homogenous Dirichlet
boundary conditions

u = 0 ∀ (x) ∈ ∂Ω (2)

48



Numerical efficiency of the conjugate gradient algorithm - sequential implementation

The essential difference of the work in the relation to the previous stage [2] is ex-
tension of the consideration on any descryption in space. Taking respectively 1D, 2D
and 3D domains we worked out three different codes (Pois1D, Pois2D and Pois3D)
dedicated for solution of these problems. For the purpose of the codes validation,
three different problems have been resolved. However the special attention is also
directed on linear algebra problems arising from approximation technique. Each con-
tinuous problem has been discretized by standard second order difference method on
structured grid. Thus our numerical schemes generate a class - in general very large
systems - of linear equations which can be expressed as

A_D(h) · û = fh (3)

where A_D(h) is the matrix of coefficients which structure depends on finite difference
operator used, û is the vector of nodal unknowns, and fh is the right - hand side vector.

The system of equations (3) is solved using the conjugate gradient solver with
or without diagonal scaling (preconditioning). The iteration were performed till the
relative norm of residual [2] dropped to 10−8.

The accuracy of the schemes were analyzed by convergence of a global measure
of the error, which a discrete norm (L2 - norm) has been chosen as

‖e‖ =

∑
J

e2
J/Nmax

1/2

, (4)

where Nmax is the total number of grid points and J stands for summation index as a i,
ij, ijk for 1D, 2D and 3D respectively.
The error (4) is defined as

e = u− û (5)

and overall accuracy is found in each case by a systematic grid refinement study.

In the next, we present our numerical experiments which were carried out for
three representative test problems. Our implementation is in C++.

2.1 Case 1D

As a first test case we consider (1,2) in 1D domain. In this case the problem in fact
reduces to ordinary differential equation, which consequently for general Laplace
operator form we defined as a

−
d2u
dx2

= f (x) ∀ (x) ∈Ω (6)

49



Joanna Gościk, Józef Gościk

where Ω is defined as the open section (0,1). For homogenous Dirichlet boundary
conditions u(x = 0) = 0 and u(x = 1) = 0 the problem has the exact solution

u(x) = (1−x) ·x · ex

with the source term defined as

f (x) = (3 + x) ·x · ex. (7)

For finite difference based solution of the Case 1D we use uniform grid describing
the computational domain Ω. The grid nodes are equally spaced, h=1/(nx-1), where
nx is the number of grid points in x-direction. The grid coordinates are defined as

xi = (i−1) ·h, for 1 ≤ i ≤ nx .

Fig. 1. Convergence plot (in L2-norm) and number of iterations performed versus mesh size for the test
Case 1D.

We solved the problem (6, 7) on a series of meshes with h = 1/4, 1/8, 1/16, 1/32, 1/64,
1/128, 1/256 and 1/512. The results in a form of norm (4) for the sequence of meshes
are presented in Fig. 1.

2.2 Case 2D

As a second test case we consider the Poisson equation defined for 2D. Laplace op-
erator modifies to the form

−
∂2u
∂x2
−
∂2u
∂y2

= f
(
x,y

)
∀
(
x,y

)
∈Ω, (8)

where Ω is defined as a unit square (0,1)× (0,1), and the exact solution has a form

50



Numerical efficiency of the conjugate gradient algorithm - sequential implementation

u
(
x,y

)
= sin(πx) · sin

(
2πy

)
.

For taken form of the exact solution and boundary conditions kind of (2) the source
term is defined as

f
(
x,y

)
= 5π2 · sin(πx) · sin

(
2πy

)
. (9)

For finite difference based solution of the Case 2D we use uniform grid describing

Fig. 2. Convergence plot (in L2-norm) and number of iterations performed versus mesh size for the test
Case 2D.

the computational domain Ω. The grid nodes are equally spaced, h = 1/ (nx−1) =

1/
(
ny−1

)
, where nx and ny is the number of grid points in x-, and y-direction, respec-

tively. For unifirm mesh, the grid coordinates are defined as
xi = (i−1) ·h, yj =

(
j−1

)
·h for 1 ≤ i, j ≤ n

(
= nx = ny

)
.

The results for the same sequence of meshes in the 2D case as for the case 1D (uni-
form spacing along x- and y-direction) are presented in Fig. 2.

2.3 Case 3D

Finally, we successfully extended finite difference schemes approximation to 3D do-
mains, so the generic Poisson equation has a form

−
∂2u
∂x2
−
∂2u
∂y2
−
∂2u
∂z2

= f
(
x,y,z

)
∀
(
x,y,z

)
∈Ω (10)

where Ω is defined as the unit cube (0,1)× (0,1)× (0,1). For testing purpose we again
took a test problem which has an exact solution

51



Joanna Gościk, Józef Gościk

u
(
x,y,z

)
= sin(πx) · sin

(
πy

)
· sin(πz) .

For the homogenous Dirichlet boundary conditions (2) - corresponding source term
is defined as

f
(
x,y,z

)
= 3π2 sin(πx) · sin

(
πy

)
· sin(πz) . (11)

Also in this case, for defining the computational domain, we use an uniform, rectan-
gular finite difference grid. The grid nodes are again equally spaced, h = 1/ (nx−1) =

1/
(
ny−1

)
= 1/ (nz−1), where in general nx, ny, nz are the number of grid points in

x-, y-, and z-direction, respectively. For uniform spacing (nx = ny = nz = n) the grid
coordinates are defined as

xi = (i−1) ·h, yj =
(
j−1

)
·h, zk = (k−1) ·h, 1 ≤ i, j,k ≤ n .

The problem Case 3D has been resolved by using different discrete problem with
h = 1/4,1/8,1/16,1/32,1/64,1/128. Results are given in Fig. 3.

Fig. 3. Convergence plot (in L2-norm) and number of iterations performed versus mesh size for the test
Case 3D.

A log-log plots (Fig. 1, Fig. 2, Fig. 3) of the error in L2 - norm versus h is ap-
proximately a straight line with a constant slope when h is sufficiently small. This
observation confirm correctness of the worked out numerical schemes. At the same
Figures we also present the total number of iterations performed for each run. Points
related to performed iterations versus mesh size illustrate also the typical behavior of
CG iterative algorithm for which number of iterations grows as the problem size in-
creases. Moreover, they are also clear confirmation that CG like algorithm has a finite
termination property - that means that at N-th iteration the algorithm will terminate

52



Numerical efficiency of the conjugate gradient algorithm - sequential implementation

(for our boundary value problem N = n-2). For Case 1D this property is perfectly
fulfilled. For 2D and 3D cases the number of iterations needed for convergence is
likely much lower than N.

3. Performance and preliminary timing experiments

The obtained results very well validate the codes Pois1D, Pois2D and Pois3D. In
this way - especially by comparisons with analytical solutions - we ensure that we
operate on validated software. On this base we can redirect the main attention to
linear algebra problems arising from approximation technique. It is worth to notice,
that in the previous Section we have illustrated convergence plots as well iteration
counts only in the sense of the maximum of iteration needed to obtain convergence.

Before we describe in details iterative solvers performance lets take a look on
the linear algebra demands. As was pointed earlier, if we will consider a standard
second order finite difference discretization of (1) on regular grid in 1D, 2D, and 3D
dimensions we obtain linear system of equations (3). Data structure for storing grid
points is not important because uniform mesh subdivision has been assumed. Quite
different situation is when we must decide about data structure for storing coefficients
of the matrix A. Strictly, after discretization on uniform mesh, the A is a matrix which
is symmetric, positive definite and has a block-tridiagonal structure where the block
have order N. In details, depending on the problem under consideration, the coeffi-
cient matrix is described in Tab. 1

Table 1. Coefficient matrix forms in diagonal format.

A1D has a 3-diagonal structure, in which non-zero coefficients (2) lie on the main diagonal and
coefficients equal (-1) lie on the two off-diagonals;

A2D has a 5-diagonal structure, in which all the non-zero coefficients lie on: the main diagonal
(4), the two neighboring diagonals (-1), and two other diagonals (-1) removed by N positions
from the main diagonal;

A3D has a 7-diagonal structure, in which all the non-zero coefficients lie on: the main diagonal
(6), the two neighboring diagonals (-1), two diagonals (-1) removed by N positions from
the main diagonal and two other diagonals (-1) removed by N×N positions from the main
diagonal.

Our final choice of data structure for matrices was primarily dictated by goals taken
among of them first of all we wanted to operate on a very large sets of data. In result,
in spite of the true sparsity of matrices A we store them in a two different formats

53



Joanna Gościk, Józef Gościk

1. dense - which is standard practice for storing full matrices, and
2. diagonal [3] - which is a most preferred for the diagonal matrices resulting from

finite difference discretization technique.

In this way we can easily operate on the diagonal scheme which may allow the com-
putational problem to be kept in main memory, and dense array scheme which can not
to be kept in main memory. For this, in fact we created two versions of our codes for
each Poisson problem, namely: Pois1D(_DNS, _DIA), Pois2D(_DNS, _DIA) and
Pois3D(_DNS, _DIA). The needed resources for storage of the matrix coefficients
have been summarized in Tab.2.

Table 2. Size of coefficient matrices for different formats of storage.

Dense format Diagonal format

Matrix size Diagonals Matrix size Problem size

1D N×N 261121 3 N×3 1533 511

2D N2 ×N2 68184176641 5 N2 ×5 1305605 262144

3D N3 ×N3 887503681 7 N3 ×7 14338681 2048383

Next, in this section we present preliminary results of possible performance of ba-
sic algebra operations attainable on the tested machines. The summary of technical
specification of the used machines is given in Tab. 3.

Table 3. Machines used in tests.

Name PC Mordor2 cluster

CPU Intel Core 2 Duo E6600 Intel Xeon X5355

OS Ubuntu 7.10 CentOS 4.6

C compiler gcc ver. 4.1.3 gcc ver. 3.4.6

C flags no optimization no optimization

BLAS/∗ in line/∗∗ in line/∗∗

54



Numerical efficiency of the conjugate gradient algorithm - sequential implementation

/∗ Basic Linear Algebra Subprograms (BLAS) - proposed by Lawson et al. [4], at present
optimized and implemented in a form of kernel routines of different specialized linear
algebra packages.

/∗∗ The results presented in the paper were obtained by running the simple loops as an
in-line code.

The point of the first experiments was to get basic information about instruments
for timing codes running on Linux platforms and especially to find attainable timer
resolution. Because there are several Linux timers as: clock, getrusage, clock_gettime,
gettimeofday in the first experiment we performed a several tests in order to chose the
one with the best resolution and which invoking give the most stable results. For this
we looked for the elapsed time in calculation one of the simplest algebraic operation
(vector updating isolated to the one element)

x = x +α ·y, (12)

where x, y and α are known numbers (in double precision).

Fig. 4. Performance chart for simple updating - PC Intel Core 2 Duo E6600.

Because the timers have a different resolution (declared µs, 1 ms, 1/100th, 1s)
therefore the timing has been obtained by execute calculation many times (repeti-
tions). As a result of this preliminary set of experiments we decided to use for timing
the C gettimeofday function which provides accuracy to approximately 1µs. Using
the function we estimate performance of the used machines by repetitions of (12)

55



Joanna Gościk, Józef Gościk

from 107 to the 5 · 107 times. The result of these calculations are given in Fig. 4 and
Fig. 5.

Fig. 5. Performance chart for simple updating - Mordor2 cluster Intel Xeon X5355.

4. Iterative solver performance

Among of many solution techniques for symmetric systems the conjugate gradient
(CG) method is an ideal iterative solver. The CG algorithm can be also treated as a
generic for all family of Krylov subspace methods. The CG algorithm in your classi-
cal form which we will called next as CGHS, is well known and his pseudo-code is
given by Algorithm 1 [3].
As we can see in a sequence of CGHS algorithm there are three basic linear algebra
operations:

1. _dot - scalar (inner or dot) product. There are two _dot’s in the algorithm what
gives 4·n operations.

s = x ·y =
(
x,y

)
=

n∑
i=1

xi ·yi,

2. _axpy - vector update (where underscore mark in the operation name is used
according to known from BLAS terminology prefix convention). There are three
_axpy’s in the algorithm what gives 6·n operations.

y = y +α ·x ,

56



Numerical efficiency of the conjugate gradient algorithm - sequential implementation

where x and y are vectors of length n, and α is a number.
3. matvec - matrix and vector multiplication. There are one matvec in the algorithm

what gives 2·n2 operations.

y = Ax ,

where A in our case is two-dimensional array which is An×n in dense format and
An×d - banded, (incorporated diagonal format storage).

Table 4. Number of memory references and floating point operations for vectors of length n [5].

Read Write Flops Flops/mem access

_dot 2 ·n 1 2 ·n 1

_axpy 2 ·n n 2 ·n 2
3

matvec n2 +n n 2 ·n2 2

Table 5. System parameters.

System parameters PC Intel Core 2 Duo E6600 Mordor2 cluster

Clock rate 2.4 GHz 2.66 GHz

Bus speed 1066 MHz 1333 MHz

L1 cache 64 KB 128 KB

L2 cache 4 MB 8 MB

(a) PC Intel Core 2 Duo E6600 (b) Mordor2 cluster Intel Xeon X5355

Fig. 6. Daxpy

57



Joanna Gościk, Józef Gościk

We timed the solver in two stages. First stage refers to the execution time which
accounts only for the solver basic algebraic operation (_axpy, _dot and matvec
for different format of matrices storage). The results are given in Figures 6÷9. All
results in the Figures clearly show that exist some kind of mismatch between CPU
and memory performance. This mismatch has an unfavorable influence on computer
performance because as a general CPU’s outperforms memory systems. The system
parameters of the platform/machines we use in the paper are characterized in Tab. 5.
The Mflops rates reflect also the ratios of memory access of the two machines. The
high rates are for vectors that can be held in the on-chip cache. The low rates with
very long vectors are related to the memory bandwith. The matvec has about the same
performance as daxpy if the matrix can be held in cache. Otherwise, it is considerably
reduced.

Next, in the second stage we measured the overall performance of the CGHS
routine according to the scheme given in Algorithm 1. The timing covers entire iter-
ation process which takes into account the time spent by the program/code for exe-
cuting all commands and instructions.

(a) PC Intel Core 2 Duo E6600 (b) Mordor2 cluster Intel Xeon X5355

Fig. 7. Ddot

58



Numerical efficiency of the conjugate gradient algorithm - sequential implementation

(a) PC Intel Core 2 Duo E6600 (b) Mordor2 cluster Intel Xeon X5355

Fig. 8. Matvec DNS

(a) PC Intel Core 2 Duo E6600 (b) Mordor2 cluster Intel Xeon X5355

Fig. 9. Matvec DIA

5. Summary

In the paper, we described the implementation of the iterative, conjugate gradient
based solver for the Poisson equation. The special attention has been paid on estimate
of performance of the most time consuming parts of the code.

Summarizing our achievements we compare our performance results to theoret-
ical peak performance of the two, various platforms used in the experiments. As a
peak performance we take counted number of floating point additions and multipli-
cations which can be completed in a period of machine cycle time. So, during the one
cycle we can estimate theoretical peak performance as a

59



Joanna Gościk, Józef Gościk

1operation
1cycle · cycletime = peak performance

[
Mflop/s

]
.

Table 6 shows comparison of the used computers peak performance and attained,
average performance of the CGHS solver. It is clear, that at the stage we can say

Table 6. Summary of the CGHS efficiency results.

Machine Peak perfor-
mance [Mflop/s]

CGHS perfor-
mance [Mflop/s]

CGHS effi-
ciency [%]

PC Intel Core 2 Duo E6600 2400 285 ÷ 335 12 ÷ 14

Mordor2 cluster 2600 335 ÷ 370 13 ÷ 14

only that we posses unoptimized, correct sequential codes for solution the Poisson
equation (Pois1D, Pois2D, Pois3D). At the further stages of the project we would
like to do the following extensions of the current implementation, by

– adopting or preparing own instrumentation necessary to the baseline performance
measurement (including possible implementation of a free available profilers),

– performing compiler optimization with the special emphasis on free available gcc
compilers,

– linking optimized libraries of the BLAS kernels and asses the possible improvements
in attainable performance,

– modification of source solver code taking into account possible identification of
the performance bottlenecks.

(a) PC Intel Core 2 Duo E6600 (b) Mordor2 cluster Intel Xeon X5355

Fig. 10. Overall performance of the CGHS routine - dense matrix of coefficients

60



Numerical efficiency of the conjugate gradient algorithm - sequential implementation

(a) PC Intel Core 2 Duo E6600 (b) Mordor2 cluster Intel Xeon X5355

Fig. 11. Overall performance of the CGHS routine - diagonal matrix of coefficients

Algorithm 1 The standard (unpreconditioned) CGHS algorithm
k = 0
x0 = 0
if x0 , 0 then

r0 = Ax0 −b
else

r0 = b
end if
ρ0 = ‖r0‖

2

while √ρk > ε · ‖r0‖ do
if k = 0 then

p1 = r0

else
pk+1 = rk +

(
ρk−1/ρk

)
· pk // _axpy

end if
k = k + 1
wk = A · pk // matvec

αk = ρk−1/pT
k ·wk // _dot

xk = xk−1 +αk · pk // _axpy

rk = rk−1 −αk ·wk // _axpy

ρk = ‖rk‖
2 // _dot

end while
x = xk

61



Joanna Gościk, Józef Gościk

References

[1] Dongarra J., Luszczek P., Petitet A.: The LINPACK Benchmark: Past, Present,
and Future. Concurrency and Computation: Practice and Experience, Vol. 15,
No. 9, 2003, pp. 803-820.

[2] Gościk J., Gościk J.: Numerical efficiency of iterative solvers for the Poisson
equation using computer cluster. Zeszyty Naukowe Politechniki Białostockiej,
Seria: Informatyka, Vol. 3, 2008.

[3] Saad Y.: Iterative Methods for Sparse Linear Systems. Second Edition, SIAM,
Philadelphia, Pa, 2003.

[4] Lawson C.L, Hanson R.J., Kincaid D.R., Krogh F.T.: Basic linear algebra sub-
programs for Fortran usage. ACM Transactions on Mathematical Software, Vol.
5, No. 3, September 1979, pp. 308-323.

[5] Arbenz P., Peterson W.: Introduction to Parallel Computing - A Practical Guide
with examples in C. Oxford University Press, 2004, Series: Oxford Texts in
Applied and Engineering Mathematics No. 9, Oxford 2004.

EFEKTYWNOŚĆ NUMERYCZNA ALGORYTMU
GRADIENTÓW SPRZĘŻONYCH - IMPLEMENTACJA

SEKWENCJNA

Streszczenie: Przedstawiono wyniki realizacji drugiego etapu projektu mającego na celu
opracowanie i wdrożenie algorytmów rozwiązywania wielkich układów równań liniowych
generowanych w procesie aproksymacji eliptycznych równań różniczkowych o pochodnych
cząstkowych (PDE) metodą różnic skończonych. W szczególności skoncentrowano się na
implementacji wersji sekwencyjnej najbardziej reprezentatywnej metody iteracyjnej zde-
finiowanej w przestrzeni Kryłowa (metody gradientów sprzężonych). W pierwszej części
pracy opisano szczegóły implementacji schematu iteracyjnego rozwiązywania dyskretnej
postaci równania Poissona, uogólniając sformułowanie również do zagadnień przestrzen-
nie trójwymiarowych. W drugiej części pracy skoncentrowano się przedstawieniu czasu wy-
korzystania procesora podczas wykonywania najbardziej czasochłonnych operacji algebry
liniowej na macierzach rzadkich. Oceny poprawności formalnej jak też i wydajności oblicze-
niowej stworzonego kodu sekwencyjnego dokonano poprzez rozwiązanie trzech zagadnień
testowych z wykorzystaniem dwóch komputerów o różnej konfiguracji sprzętowej.

Słowa kluczowe: Metody iteracyjne, Metoda różnic skończonych, Równanie Poissona,
Wydajność kodu sekwencyjnego

62


