
ZESZYTY NAUKOWE POLITECHNIKI BIAŁOSTOCKIEJ 2009
Informatyka – Zeszyt 4

Maciej Brzozowski1, Vyacheslav Yarmolik1

OBFUSCATION QUALITY IN HARDWARE DESIGNS

Abstract: Software is more and more frequently distributed in form of source code. Un-
protected code is easy to alter and build in others projects. The answer for such attacks
is obfuscation. Transformation of software source code which preserves its semantical func-
tionality but analizability is made very dificult. We focus in our research on Very High Speed
Integrated Circuits Hardware Description Language (VHDL). In previous articles we pre-
sented transformats assimilated from other high level languages for needs of hardware de-
signs and we showed a set of new transformants which do not appear in different languages
than VHDL. The next step we have to do is to establish a set of criterias through which we
can rate quality of analyzed transformats. In article we present current bacground of soft-
ware quality measure and we rate their usage for protecting intellectual property on digital
designs. After that we propose a new way of obfuscation quality measure taking into account
requirements of hardware designs.

Keywords: Obfuscation, Very High Speed Integrated Circuits Hardware Description Lan-
guage (VHDL), Intelectual Property Protection

1. Introduction

Hackers’ activity shows that it should secure not only software before stealing
but also a hardware projects. Source code is stolen and built in other projects. Many
of the security tools that can be used to protect the software were created like water-
marks, fingerprints and obfuscation (Figure 1).

The purpose of watermarking [9,14,10] is to insert a mark (owner copyright
notice) to the program that is invisible and difficult to remove. With the watermark,
it is possible to prove the owner rights to the code or project.

Next technique for protecting projects is fingerprinting [7,6]. Fingerprinting
is similar to watermarking, except a different (unique) secret message is embedded
in every distributed cover message. A typical fingerprint includes a seller, product,
and customer identification numbers. This allow to detect when and where theft has
occurred and to trace the copyright offender.

1 Faculty of Computer Science, Bialystok Technical University, Białystok

19

Maciej Brzozowski, Vyacheslav Yarmolik

Intellectual Property Protection

Legal Protection Technical Protection

Software Protection

Watermarking Cryptographic Methods Obfuscation

Hadware Protection

Fig. 1. Ways of intelectual property protection.

The last one technique is obfuscation [5] - one of the most modern and effective
software protection technique. Obfuscation alters the code so that it is very diffi-
cult to read and understand. This type of protection does not protect against illegal
copying and execution. The aim of obfuscation is prevention against stealing parts
of source code (analysing and rebuilding in) and on the reverse engineering.

Subject of obfuscation is so young so it is hard to tell about its history. The first
articles date from the second half of nineties. The precursor of subject was Christian
Collberg. He wrote the first publication connected with obfuscation [5]. In several
articles, which coauthor he is, Collberg presents techniques of code obfuscation and
divide them into four groups by the target application - layout, data, control and
preventive transformations. A lot of articles were written but no one concerned ob-
fuscation of VHDL code. It is very easy to change code of other language like JAVA
or C# because size and execute time of transformed program is not so significant.
In VHDL these metrics are the most important for a software engineer.

The purpose of our work is to study obfuscation techniques and choose most
suitable of them to protecting intellectual property rights on VHDL source code.
We should remember that this language in comparison with other most frequently
used high level languages is, in his building, unique. VHDL language makes uses
of parallel processing and a lot of obfuscation techniques which can not be used
in such languages like C# or Java are very useful and relatively cheep.

20

Obfuscation quality in hardware designs

2. Definition of obfuscation

For people who are not familiar with the subject of obfuscation, it is intentional
action conducting to modify the software code in such way that it becomes difficult
to understand. Gaël Hachez in [9] changed definition of obfuscation created by
Collberg in [5] and also used in [8] to:

Definition 1 (Obfuscating Transformation) P τ→ P′ be a transformation of a
source program P into a target program P′. P τ→ P′ is an obfuscating transformation,
if P and P′ have the same observable behavior. More precisely, in order for P τ→ P′

to be a legal obfuscating transformation the following conditions must hold:

a) If P fails to terminate or terminates with an error condition, then P′ fails to termi-
nate or terminates with an error.

b) Otherwise, P′ must terminate and produce the same output as P.

We should remember, that every program P′ will be possible to reconstruct to P′′,
which will have very similar structure to P. Obviously, such operation will absorb
much time and costs, but always it will be possible [3]. Therefore problem of obfus-
cation is not a protection before decompilation of program, but makes it very difficult.

Listing 1.1. Winner of 1st International Obfuscated C Code Contest in category Dis-
honorable mention - 1984
i n t i ; main () { f o r (; i ["] < i ;++ i){−− i ; } "] ; r e a d (’− ’− ’− ’ , i +++" h e l l \
o , wor ld ! \ n " , ’ / ’ / ’ / ’)) ; } r e a d (j , i , p) { w r i t e (j / p+p , i−−−j , i / i) ; }

In Listing 1.1 is showed program source code anonimous.c - winner of 1st Inter-
national Obfuscated C Code Contest in category Dishonorable mention. Obfuscated
example shows how complicated analysis of protected code may be. For people who
would like to take analysis of code and check its correctness we place base code
(Listing 1.2).

Listing 1.2. Hello word. Code before obfuscation.
inc lude < s t d i o . h>
i n t main (void) {

p r i n t f (" H e l l o World ! \ n ") ;
re turn 0 ; }

21

Maciej Brzozowski, Vyacheslav Yarmolik

3. Quality characteristics - theoretical background

Before we attempt to describe obfuscation transforms, we need to be able to evalu-
ate their quality. In this section we describe theoretical background of quality code
measurement. We will also examine different new approaches to this problem.

3.1 International Standard ISO/IEC-9126

In 1991 the International Standards Organization introduced standard ISO/IEC-9126
[1], whose task was to define the standards and requirements for the description of the
software. In subsequent years, the standard has been extended by four characteristics:

– ISO/IEC 9126-1:2001 Quality model
– ISO/IEC 9126-2:2003 External metrics
– ISO/IEC 9126-3:2003 Internal metrics
– ISO/IEC 9126-4:2004 Quality in use metrics

It is currently the most widely known and wide-spread quality standard of soft-
ware. The standard ISO/IEC-9126 is often confused with the characteristics ISO/IEC-
9126-1:2001 [2] introduced in 2001. The model defines the following six main qual-
ity characteristics:

– Functionality - a collection of attributes that describe a set of software functions
and their designated properties.

– Reliability - a collection of attributes describing the capabilities of software
to maintain the specified requirements as to its stability under strictly defined
conditions of work.

– Usability - a collection of attributes that describe the level of work needed to learn
to use the software and the subjective assessment of the attractiveness of the soft-
ware expressed by group members.

– Efficiency - a measurement of the use of system resources compared to the per-
formance of software subject to certain conditions.

– Maintainability - a collection of attributes that describe the level of work required
to bring about changes in the software.

– Portability - a collection of attributes describing the product the ability to transfer
programming between other systems.

They are supported by less significant characteristics in order to increase the precision
of individual metrics.

22

Obfuscation quality in hardware designs

3.2 Collberg’s quality measures

In 1997 in the technical report [5] Christian Collberg with Clark Thomborson
and Douglas Low defined the concept of obfuscation and attempted to assess its qual-
ity.

They defined quality of obfuscation as combination of:

– Potency - degree of difficulty understanding obfuscated code for the analysing
person. Influence on the power of transformation have: introduce new class and
methods, increase predicates and nestling level of conditional, increase the high-
est of the inheritance tree, increase long-range variables dependencies.

– Resilience - how much time a developer has to spend to implement automatic
deobfuscator, which can effectively lower the power of transform.

– Cost - metric applies to both increase the cost of the implementation of the pro-
gram as well as increased demand for resources like memory or CPU time.

In the lectures [16] Collberg previously defined range of metrics expends by
a descriptive metric stealth. Its estimate is dependent on the context in which it was
used.

3.3 Petryk’s software metrics

In [15] Siarhei Petryk with Ireneusz Mrozek and Vyacheslav N. Yarmolik proposed
metric composed from two submetrics. First group based on code complexity like
the number of conditional operators compared to all words in the program or average
depth of branching operators. The second based on program execution time and its
length. Values of metrics from first class should be maximized whereas from the sec-
ond class should be minimized. They assumed that the best obfuscator optimise the
program code simultaneously makes source code more confusing and harder to inter-
pret.

4. Obfuscation quality - new approach

Presented above metrics have been developed for non hardware languages. For exam-
ple size of the code does not have such signification in designing hardware systems
in opposite to the software projects. We are not bound by the amount of RAM or
CPU speed. Above metrics do not take into account the signal delay propagation
time on critical path which is one of most significant metric in digital designs and
not occur in software projects. Therefore, there is a need to develop metrics which
are intended solely to evaluate the quality obfuscation transforms used in hardware
projects.

23

Maciej Brzozowski, Vyacheslav Yarmolik

First step in design quality metric is divide metrics in two groups:

– critical metrics - most important metrics like the path delay of the system
and the amount of used area on a chip.

– less important metric but not meaningless like complexity and code size.

Lower
specification

limit

Upper
specification

limit

target

Fig. 2. Target and tolerance for metrics.

ISO/IEC-9126 [1] does not define how to measure metrics described in it. Some
of quality attributes are subjective and difficult to measure. The standard describe
only how the metrics should work and measure of them leaves for experts. We can
not rely on metrics which estimate will be so costly. By expensive we understand
the time effort and resources needed for estimate. The better expert that his time
is more and more expensive.
Effective metrics satisfy the following conditions:

– performance is clearly defined in a measurable entity - the metric is quantifiable.
– exists a capable system to measure metric in the entity.

Maximum
delay on

critical path

No upper
specification

limit

current delay
on critical path

Fig. 3. Target and tolerance metric for critical path delay in obfuscated design.

The second criteria that metrics must be estimated taking into account is the pa-
rameters imposed by the user. In Figure 2 is presented target value of metric witch
allowable deviation where a characteristic will be still acceptable. Lower specifica-
tion limit (LSL) and upper specification limit (USL) are break points where make

24

Obfuscation quality in hardware designs

worse performance will make design unable to work properly and improve make
design extremely useful.

It is mean that user has to know metric or estimated value expected ranges for ob-
fuscated design. Figure 3 present maximal delay on critical path propagation of pro-
tected design source code. The propagation delay reflects how fast system can operate
and is usually considered as speed of the system. Minimal delay is not defined be-
cause delay lower than maximal or in special cases lower than nominal delay will be
always acceptable if we consider only combinational circuits. In other cases we have
to remember about triggers time specification - setup time and hold time. We should
note that reach of low value of propagation delay will lead to high costs of code
transformation.

The second most important metric is area on the target chip used by obfuscated
design. As in the case of propagation delay user does not define the upper value of the
used area because it is not necessary and any value in range below maximal would
be acceptable. Design area greater than maximal would not fit in target chip. Circuit
area combined with propagation delay is most important design criteria in digital
systems.

The third most significant metric is cost of apply obfuscation transformation.
We count the cost as effort of resources such as time of execute transformation, im-
plementation effort and human resources needed.

E1 = a1
td
t ′d

+a2
area
area′

+
a3

Ec

LSLtd =
td

tdmax

⇒ td
tdmax

6
td
t ′d
⇒ tdmax > t ′d

LSLarea =
area

areamax
⇒ area

areamax
6

area
area′

⇒ areamax > area′

Ec = { f ree 7→ 1, cheap 7→ 2, expensive 7→ 22, very expensive 7→ 23}

td - nominal value of propagation delay on critical path
tdmax - maximal value of propagation delay on critical path
t ′d - value of propagation delay on critical path after obfuscation transforma-

tion applying
area - nominal value of used area
areamax - maximal value of used area
area′ - value of used area after obfuscation transformation applying
Ec - cost of apply obfuscation transformation
a1,a2,a3 - weight of the importance of metrics

25

Maciej Brzozowski, Vyacheslav Yarmolik

The second group describes how good obfuscated code is. It is very easy to de-
scribe how correctly written code should look but it is very difficult to reflect it in met-
rics. The first easiest to estimate submetric is number of lines of code (LOC). Count-
ing lines of code is not reliable in high level languages therefore quality metric should
based on instruction statements to (IS). More instruction statements to line of code
increase submetric value and makes analysis difficult.

Other useful metric is cyclomatic complexity defined by Thomas McCabe in
[13]. The measure describe the number of linearly independent (distinct) paths
through a program’s flow graph. To have poor testability and maintainability we rec-
ommends that program module should exceed a cyclomatic complexity of 10. This
high level of metric will fuzzy logical pattern of design.

Our quality metric lets user to choose more suitable metrics for him. User might
chose for example:

– one or more from Halstead metrics [11] - metric currently less used
– Henry and Kafura’s structure complexity metric [12] - increasing fan-in

and fan-out will decrease readability and analyzability of project

E2 = a4
E ′CC
ECC

+a5
E ′IS/LOC

EIS/LOC
+a6

V ′p
Vp

+a7
C′P
CP

+ · · ·︸ ︷︷ ︸
optional

EIS/LOC =
IS

LOC

CC - Cyclomatic Complexity
IS - Instruction Statements
LOC - Lines Of Code
V - Halstead Volume
CP - Henry and Kafura’s structure complexity
a4, . . . - weight of the importance of metrics

On the basis of previous parts of metrics we achieved our goal:

E = E1 +E2

E1 is a group of the most important metrics for digital designs and E2 represents
complexity of obfuscated code.

26

Obfuscation quality in hardware designs

5. Estimation quality of obfuscating transformation

Layout obfuscation [5] relies on changing (removing) information in the source code
that does not effect operation of program. It is often called free because does not
influence on size of program neither on its speed of operation after transformation.
There is one-way transformation because once deleted information can not be re-
stored. Amount of helpful information decreases for analysing person. This technique
contains removing comments, descriptions and changing names of variables which
suggest what is it for. For scrambling identifiers does not change propagation delay
on critical path nor project area on the target chip.

Esc = a1 +a2 +a3 +a4 +a5

td
t ′d

=
area
area′

=
E ′CC
ECC

=
E ′IS/LOC

EIS/LOC
= 1

Ec = f ree = 1

It is easy to see that layout obfuscation is one of the cheapest techniques allowed
to protect intellectual property.

There is transformation which does not appear in other programming languages.
In view of its specification VHDL is based on parallel processing instruction. Almost
every code written in VHDL may be converted from or to sequential processing.

Listing 1.3. Conversion of sequential processing to parallel

p r o c e s s (x)
v a r i a b l e tmp : s t d _ l o g i c ;

begin
tmp := ’ 0 ’ ;
f o r i in x ’ range loop

tmp := tmp xor x (i) ;
end loop ;
y <= tmp ;

end p r o c e s s ;
⇓

tmp <= tmp (N−2 downto 0)& ’0 ’ xor x ;
y <= tmp (N−1);

Mentioned above transform is not difficult to realize. Listing 1.3 presets two obfus-
cation techniques from group of control transformation. We used technique called
unrolling loops connected with conversion of sequential processing to parallel [4].
Transformation does not influence on critical part of metric.

27

Maciej Brzozowski, Vyacheslav Yarmolik

6. Conclusion

We have developed the first hardware design obfuscation quality metering scheme.
The metric takes into account the signal delay propagation time on critical path
and the amount of used area by design on a target chip. Moreover with this quality
tool a user can choose obfuscation transforms answering his requirements of created
project.

References

[1] ISO/IEC-9126, International Standard ISO/IEC. In Information technology:
Software product evaluation: Quality characteristics and guidelines for their
use. International Standards Organisation, 1991.

[2] ISO/IEC-9126-1:2001, International Standard ISO/IEC 9126. In Information
Technology – Product Quality – Part1: Quality Model. International Standard
Organization, June 2001.

[3] Impagliazzo R. Rudich S. Sahai A. Vadhan S. Yang K. Barak B., Goldreich O.:
On the (im)possibility of obfuscating programs, Lecture Notes in Computer
Science, 2139:1–14, 2001.

[4] Yarmolik V. N. Brzozowski M.: Vhdl obfuscation techniques for protecting
intellectual property rights on design, 5th IEEE East-West Design and Test
Symposium, pages 371–375, 2007.

[5] Low D. Collberg C., Thomborson C.: A taxonomy of obfuscating transforma-
tions, Technical report, July 1997.

[6] Thomborson C. Collberg C.: The limits of software watermarking, 1998.
[7] Thomborson C. Collberg C.: Watermarking, tamper-proofing, and obfuscation

– tools for software protecti on, Technical Report TR00-03, Thursday, 10 2000.
[8] Low D. Collberg C. S., Thomborson C. D.: Breaking abstractions and unstruc-

turing data structures, In International Conference on Computer Languages,
pages 28–38, 1998.

[9] Hachez G.: A comparative study of software protection tools suited for e-
commerce with contributions to software watermarking and smart cards, Uni-
versite Catholique de Louvain, March 2003.

[10] Wroblewski G.: General Method of Program Code Obfuscation, PhD thesis,
Wroclaw University of Technology, Institute of Engineering Cybernetics, 2002.

[11] Halstead M. H.: Elements of Software Science, North-Holland, Amsterdam,
The Netherlands, 1977.

[12] Kafura D. Henry S.: Software structure metrics based on information flow,
7(5):510–518, September 1981.

28

Obfuscation quality in hardware designs

[13] McCabe T. J.: A complexity measure, IEEE Trans. Software Eng., 2(4):308–
320, 1976.

[14] Petitcolas F. A. P. Katzenbeisser S.: Information hiding - techniques for
steganography and digital watermarking, Artech House, Norwood, 2000.

[15] Yarmolik V. N. Petryk S., Mrozek I.: Efficiency of obfuscation method based
on control transformation, In ACS, pages 351–359, 2006.

[16] www.cs.arizona.edu/∼collberg/Research/Publications/index.html.

JAKOŚĆ OBFUSKACJI PROJEKTÓW SPRZĘTOWYCH

Streszczenie Obfuskacja jest techniką przekształcania kodu źródłowego oprogramowania,
który zachowuje swoje działanie semantyczne, ale znacząco zostaje utrudniona jego ana-
liza oraz zrozumienie. Swoje badania skupiliśmy na sprzętowym języku Very High Speed
Integrated Circuits Hardware Description Language (VHDL). W poprzednich pracach prze-
stawiliśmy szereg transformat zaasymiowanych z języków wysokiego poziomu na potrzeby
projektów sprzętowych oraz zaproponowaliśmy nowe nie występujące w innych językach
niż VHDL. Kolejnym krokiem jaki należy wykonać jest ustalenie kryteriów dzięki którym
będzie można ocenić jakość analizowanych transformat. W artykule przedstawimy dotych-
czas używane metody oceny jakości oprogramowania oraz przeprowadzimy ich ocenę na
potrzeby ochrony własności intelektualnej projektów sprzętowych. Następnym krokiem bę-
dzie przedstawienie nowego sposobu oceny jakości obfuskacji z uwzględnieniem wymagań
jakie stawiają przed programistą projekty sprzętowe.

Słowa kluczowe: Obfuskacja, VHDL, ochrona własności intelektualnej

29

