ZESZYTY NAUKOWE POLITECHNIKI BIAL.OSTOCKIE]J 2009
Informatyka — Zeszyt 4

Krzysztof Bandurski!, Wojciech Kwedlo!

TRAINING NEURAL NETWORKS WITH A HYBRID
DIFFERENTIAL EVOLUTION ALGORITHM

Abstract: A new hybrid method for feed forward neural network training, which combines
differential evolution algorithm with a gradient-based approach is proposed. In the method,
after each generation of differential evolution, a number of iterations of the conjugate gra-
dient optimization algorithm is applied to each new solution created by the mutation and
crossover operators. The experimental results show, that in comparison to the standard differ-
ential evolution the hybrid algorithm converges faster. Although this convergence is slower
than that of classical gradient based methods, the hybrid algorithm has significantly better
capability of avoiding local optima.

Keywords: neural networks, differential evolution, conjugate gradients, local minima

1. Introduction

Artificial Neural Networks with feedforward structure (ANNs) are widely used in
regression, prediction, and classification. The problem of ANN training is formulated
as the minimization of an error function in the space of connection weights. Typical
ANN training methods e.g. backpropagation and conjugate gradient algorithms are
based on gradient descent. The most advanced of them [4,12] are capable of fast
convergence. However, like all local search methods, they are incapable of escaping
from a local minimum of the error function. This property makes the final value of
the error function very sensitive to initial conditions of training.

In recent years global search methods have received a lot of attention. Examples
of such methods include evolutionary algorithms (EAs) [11] and simulated annealing
[1]. EAs are stochastic search techniques inspired by the process of biological evo-
lution. Unlike gradient descent methods they simultaneously process a population of
problem solutions, which gives them the ability to escape from local optima. How-
ever this ability comes at the expense of very high computational complexity. This
problem is especially important in neural network training where evaluation of each
solution requires reading the whole learning set. A possible method for alleviating

! Faculty of Computer Science, Bialystok Technical University, Biatystok

Krzysztof Bandurski, Wojciech Kwedlo

this drawback is construction of a hybrid algorithm which incorporates the gradient
descent into the process of the evolutionary search.

The hybridization of EAs with gradient based methods can be achieved in a
number of ways. In one approach, employed e.g. in the commercial DTREG package
([14]), an EA is used to locate a promising region of the weight space. Next, a gra-
dient descent method is used to fine-tune the best solution (or all the solutions from
the population) obtained by the EA. A version of this method, in which Levenberg-
Marquardt algorithm is employed to refine a solution obtained by the DE was pro-
posed in [16].

In an alternative approach, referred to in [13] as Lamarckian and applied for
neural network training in [5], a gradient descent procedure is incorporated into an
EA as a new search operator. This operator is applied to the population members in
each EA iteration, in addition to standard operators such as mutation and crossover.
Each application of the operator usually involves more than one iteration of a gradient
descent method.

This paper is motivated by the work of Ilonen et al. presented in [9], in which
they applied Differential Evolution (DE) proposed in [15] to train the weights of
neural networks. They concluded that although the algorithm can converge to a global
minimum, the computation time required to achive that goal can be intolerable. In an
attempt to speed up the convergence rate of DE we followed the Lamarckian approach
and combined it with the Conjugate Gradients ([4]) algorithm.

2. Artificial Neural Networks

A single node (artificial neuron) of an ANN receives a vector of input signals x, aug-
mented by the bias signal which is always equal to one. The node then computes
the dot-product of this input vector and the vector of weights w to obtain its activa-
tion. The output signal y emitted by the node is a usually nonlinear function of the
activation, referred to as the transfer function or the activation function and denoted
here as f(net). It may be a simple threshold function, though other functions, like
standard sigmoid or hyperbolic tangent, are often chosen for their specific properties,
e.g. differentiability. The above operations can be written down as:

y = flnet) = f(x-w), @)
where net is the node’s activation, x represents the vector of input values including
bias and w stands for the vector of weights.

In a multilayer feed forward ANN nodes are arranged in layers. A single network
of this type consists of the input layer, which does not perform any computations and

Training neural networks with a hybrid Differential Evolution algorithm

Fig. 1. A feed-forward ANN with two processing layers

only emits output signals, an arbitrary number of processing layers, i.e. one or more
hidden layers and one output layer. Each node uses Equation (1) to compute its output
signal which is then transmitted to one input of each node in the following layer. An
example of an ANN with two processing layers (e.g. one hidden layer and one output
layer) is presented in Fig.1. The outputs of the nodes that form the /-th processing
layer in such a network can be calculated as follows:

yi = fi(x;Wy), (2)

where X; = [1,y/—1,1...Yi—1,n---Yi—1,,,] is a vector consisting of n;_; outputs signals
emitted by the previous layer / — 1 augmented with the bias signal equal to 1, y; =
Vi1---Yin---Yin] is the vector of output values yielded by the /-th layer, fj is the
element-by-element vector activation function used in the /-th layer and W; is the
matrix of weights assigned to the neurons in the /-th layer, in which a single n-th
column contains all the weights of the n-th neuron, n =1...n;. When / is the number
of the output layer, equation (2) yields the final output vector z.

Before an ANN can be used for prediction it must first undergo fraining. This
is usually done using a training set T consisting of m pairs (training samples): 7 =
{(x1,t1), (Xx2,t2), ..., (X, t;), ..., (X, t) }, Where X; is a vector of d input values and
t; is a vector of c¢ desired target values corresponding to the i-th input vector. For
each input vector x; supplied to the input layer the neural network yields an output

Krzysztof Bandurski, Wojciech Kwedlo

vector z;, which is compared against the desired target vector t; using a chosen error
function E. A commonly used error function is the sum of squared errors:

c

SSE(T,W) =Y ¥ (tw —z)?, 3)
i=lk=1
where W is the set of all weights in the network, #;; denotes the k-th value in the i-th
target vector and z;; denotes the k-th output of the network produced in response to the
i-th input vector. The training error calculated using Equation (3) is then reduced by
adjusting the weights. We may thus formulate the problem of learning as the problem
of minimizing the error function in the space of weights.

3. Differential Evolution

In this section the most popular DE/rand/1/bin differential evolution method is pre-
sented. For a more detailed description the reader is referred to [15].
Like all evolutionary algorithms, differential evolution maintains a population
U = {uj,uy,...,u,} of s solutions to the optimization problem. Usually each solution
takes the form of a D-dimensional real-valued vector, i.e. u; € ®P. At the beginning
all members of the population are initialized randomly. The algorithm advances in
generations. Each generation involves three consecutive phases: reproduction (cre-
ation of a temporary population), computing of the objective function (called the
fitness in the EA terminology) for each temporary population member, and selection.
Reproduction in differential evolution creates a temporary population
V ={vy,va,...,Vs} of trial vectors. For each solution u; a corresponding trial vector
v; is created. Each element v;; (where j = 1...D) of the trial vector v; is generated
as:
- ugj+F +(upj—ucj) if rmd() <CR @
Y Ui otherwise '

In the above expression F € [0,2] is a user supplied parameter called the
mutation coefficient. a,b,c € 1,...,s are randomly selected in such a way, that
a#b#c#i rnd() denotes a random number from the uniform distribution on
[0,1), which is generated independently for each j. CR € [0, 1] is another user sup-
plied parameter called the crossover factor. The parameters F and CR influence the
convergence speed and robustness of the optimization process. The choice of their
optimal values is application dependent [15]. To alleviate the problem of finding op-
timal F and CR values we turned to [3] where Brest et al. proposed a self-adaptation

Training neural networks with a hybrid Differential Evolution algorithm

scheme for these parameters. The values of F and CR are stored with each individ-
ual u;. Before they are used to generate a candidate solution v; they are changed as
follows:

F,+rmmd() xF, if rnd() <1
Figi1= { “ X .)
G otherwise
rmd() if rmd() <1
CRiG+1 =) . (6)
CR;c otherwise

where 71 =1, = 0.1, F; = 0.1 and F, = 0.9, whereas F; s and CR; ¢ denote
the F and CR values assigned to the i-th individual in the G-th generation. The new
values F; g1 and CR; g4 are stored with the candidate solution which may replace
the original one.

The remaining two phases of a single DE generation are the computation of
fitness for all members of the trial population V and the selection. The selection in
differential evolution is very simple. The fitness of each trial solution v; is compared
to the fitness of the corresponding original solution u;. The trial vector replaces the
original in U if its fitness is better. Otherwise the trial vector is discarded.

To apply DE to ANN training [9] the weights of all neurons are stored in a real-
valued solution vector u. The algorithm is used to minimize the sum of squared errors
(SSE) or a similar criterion function. The evaluation of this function requires iterating
through all elements of the training set 7 and summing all the partial results (squared
errors in the case of SSE) obtained for all the elements of 7. In the terminology of
gradient-based methods, a similar approach, in which the weights are updated after
the presentation of all the elements of 7' to the network is called the batch training
protocol [6].

4. Conjugate Gradient Descent

The conjugate gradient algorithm (CG) was originally proposed in [8] and applied
to minimize of n-dimensional functions in [7]. In [4] it was used for neural network
learning as a replacement for the classical backpropagation algorithm (BP). In clas-
sical BP the vector of weights being the current estimate of the desired minimum is
updated in each step by shifting it along the gradient, but in the opposite direction,
according to the following formula:

W = w g m-wEWO)),)

Krzysztof Bandurski, Wojciech Kwedlo

where W) is the set of all m weights in the network (including biases), mn is
an arbitrarily chosen learning coefficient and \/E (W(k)) is the gradient of E in W),
In the CG algorithm, however, the gradient is used only to determine the first error
descent direction, whereas each subsequent direction is chosen to be conjugate with
all the previous ones, i.e. one along which the gradient changes only its magnitude,
and not direction (in practical applications, though, the algorithm is restarted every m
iterations). Another feature that differs the CG algorithm from BP is that it employs
a line search algorithm in order to find a “sufficient” approximation of a minimum of
the error function along a given direction. The CG algorithm works as follows:

Let W(© be the initial estimate of the minimum W* of E(W), m be the size of
W, k=0.

[step 0]: if k mod m == 0 then

DY = — 7 E(WW))
else

DY = —EWW) + B,)

where By is the coefficient governing the proportion of the previous search di-
rections in the current one. It may be one of several expressions. In our work we
chose the one suggested Polak-Ribiere, which, according to [6], is more robust in
non-quadratic error functions:

[VEWW)T[VEW*) — VE(W* D))
D

P E W) T EW)

(10)

[step 1]: Perform a line search starting at W®) along direction D®) to determine
a step length oy, that will sufficiently approximate the minimum of the single variable
function given by:
F(a) = EWW - aD®) (11)
[step 2]: Update the estimate of the minimum of E(W):

wkt) — w4 g, pk) (12)

[step 3]: k=k+1, goto [step 0]

The above procedure is repeated until a chosen termination criterion is met. It
is clear that the selected line search algorithm has a significant impact on the overall
performance of the algorithm presented above. We used an algorithm developed by

10

Training neural networks with a hybrid Differential Evolution algorithm

Charalambous, which is based on cubic interpolation. For a detailed description of
this algorithm the reader is referred to [4].

5. Hybridization

As indicated in the introduction, our method of combining DE and the CG algorithm
consisted in applying the latter to each candidate solution v; obtained according to
(4) before the computation of its fitness. The number of CG iterations is set by the
user and remains constant throughout the entire experiment. By “fine-tuning” each
candidate before comparing it with its predecessor we were hoping to speed up the
convergence rate of DE.

6. Experiments

We tested our hybrid algorithm on 3 artificial problems and 1 real-life dataset that are
described in the following paragraphs. Two versions of each of the artificial problems
were tackled, each differing in the size of a single training sample. The convergence
properties of our method were compared against the results yielded by self-adaptive
DE with no local optimization, the Polak-Ribiere variant of Conjugate Gradient. As
the computational complexity of one epoch is different in each of these algorithms,
we decided to follow [9] and present our results on timescales. Each algorithm was
run 30 times for each dataset. The weights of each neuron were initialized with ran-
dom values from the range (— ﬁ, n‘;), where n;, is the number of inputs of the neuron,
including bias. Each neuron uses standard sigmoid as the activation function, whereas
the error is measured by SSE. The population size in DE was set to 32. The experi-
ments were run under Linux 2.6 on machines fitted with 64-bit Xeon 3.2GHz CPUs

(2MB L2 cache) and 2GB of RAM.

6.1 Synthetic datasets

The bit parity problem. Two networks were examined: one consisting of 6 input
nodes, 6 hidden nodes and 1 output node (6-6-1) and one consisting of 12 input
nodes, 12 hidden nodes and 1 output node (12-12-1). The output should be set to
1 if the number of 1s in the input vector is even. The training sets consisted of 2°
and 2! samples, respectively

The encoder-decoder problem. One network consisted of 10 input nodes, 5 hidden
nodes and 10 output nodes (loose encoder), whereas the other consisted of 64
input nodes, 5 hidden nodes and 64 output nodes (tight encoder). The task was to
recreate the unary represention of a number presented in the input layer.

11

Krzysztof Bandurski, Wojciech Kwedlo

The bit counting problem. Two networks, (5-12-6) and (10-16-11) were trained to
generate a unary representation of the number of bits that are set in the input
vector.

6.2 Real-life dataset

The real-life dataset that we used was the optdigits database available in the UCI
Machine Learning Repository [2]. It consists of preprocessed, normalized bitmaps of
handwritten digits contributed by a total of 43 people. Each sample consists of 64
input values, representing a matrix of 8x8 where each element is an integer in the
range 0..16, and 1 output value in the range of 0..9 representing the digit. The entire
training set consists of 3823 samples. We modified the dataset and made each training
sample contain a unary representation of the relevant digit, consisting of 10 binary
values. The network that we trained consisted of 64 input nodes, 20 hidden nodes and
10 output nodes.

6.3 Results

Results are presented in tables and graphs. In the case of the synthetic datasets, each
table consist of three columns. The first one contains the names of algorithms that
were compared in our study: cgpr stands for Conjugate Gradients described in section
4., DE denotes the Differential Evolution algorithm presented in section 3., whereas
DE-cgpr-zxxx corresponds to Differential Evolution augmented with the conjugate
gradient algorithm as described in section 5., where xxx denotes the number of itera-
tions of Conjugate Gradients that were applied to each individual before the selection
phase. The two other columns contain the results obtained for each variant of the
dataset (the respective network configuration and the duration of each run are given
in the header of each column). These results were averaged over 30 independent runs
and include: the sum of squared errors divided by 2 (SSE), the standard deviation
(0), the number of forward passes of the entire training set through the network per
second (fp/s) and the number of backward passes of the error (bp/s) and finally the
mean number of DE generations (gen).

Below each table there are two graphs, each presenting 6 mean error curves
reflecting the progress of the tested algorithms.

The results obtained for the real-life dataset are presented in a similar manner,
with the difference being that only one network configuration was used.

12

Training neural networks with a hybrid Differential Evolution algorithm

Table 1. Results obtained for the bit parity problems

algorithm (6-6-1) - 5 min (12-12-1)-4h
SSE| © fp/s bp/s gen SSE c | fp/s |bp/s| gen
cgpr 0.457(1.423|11398.3|11398.3| n/a 512.00| 0.00 |75.7|75.7) n/a
DE 2.609]0.593|18826.2| 0.0 [176494.7| |321.80{175.97|133.5| 0.0 {60063.3
DE-cgpr-z008(0.285(0.229|11585.3|11585.2| 2591.3 | [108.20| 35.27 | 76.0 |76.0| 884.2
DE-cgpr-z016(0.044(0.113|11578.3|11578.2| 1324.6 | | 56.39 | 20.10 | 76.0 |76.0| 439.7
DE-cgpr-z032(0.000{0.000|11595.8|11595.7| 671.1 26.62 | 13.91|76.0 |76.0| 217.0
DE-cgpr-z064(0.000{0.000(11605.4|11605.3| 342.1 26.56 | 10.63 | 76.0 |76.0| 96.5
(@ (b)
‘ cgpr — ‘ cgpr —
DE DE
100000 DE-cgpr-z008 1 DE-cgpr-z008
DEcgp 1032
L DE-cgpr-z064 --e-- 1000 ¢ DE—CEEFZO@ mm@me
1 ;&mg‘l' . J o N S NN
Y oo, it i, a B T TV ARVERVHE VR
= °°°a{ev @ .
s le-05 "‘::n?. 7 s Ak TR
[, 100 | B
H "'._._“ «..“‘__' . 5::‘::‘:"5...“”5_,_5 o-g-m-g-n
le-10 H 1 "'S?° a.
H R S,
le-15 ‘ ‘ : __Sereves 10 ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 50 100 150 200 250 300 0 2000 4000 6000 8000 10000 12000 14000
time(s) time(s)

Fig. 2. SSE curves for the 6-bit (a) and 12-bit (b) parity problems

7. Conclusions

The results presented above demonstrate that the hybrid algorithm converges signifi-
cantly faster than the original version of DE used in [9], provided that the number of
iterations of the local optimization algorithm is sufficient. In two cases (namely 64-
5-64 encoder-decoder, DE-cgpr-z008 and 10-bit counting, DE-cgpr-z008) the hybrid
solution achieved a greater error value than the one achieved by the unmodified ver-
sion of DE, but as the number of iterations of conjugate gradient descent increased,
the hybrid version proved to be superior. This supports the findings presented by
Cortez in [5], who advocated the use of the Lamarckian approach.

Our solution’s capability to escape local minima is visible the most in figures
2 (a), 2 (b), 3 (a), 5, which also demonstrate its superiority in comparison to the

13

Krzysztof Bandurski, Wojciech Kwedlo

Table 2. Results obtained for the encoder-decoder problems

algorithm (10-5-10) - 5 min (64-5-64) -4 h

SSE| © fp/s bp/s gen SSE| o | fp/s | bp/s gen
cgpr 0.017|0.090{35535.8|35535.8| n/a 1.85(6.591048.7|1048.7| n/a
DE 0.075|0.169|44603.3| 0.0 |418154.8| [15.61|0.88|1546.9| 0.0 [696124.0

DE-cgpr-z008|0.000|0.000{35569.4|35569.3| 7141.7 | [17.99(1.24|1044.3|1044.3| 12602.6
DE-cgpr-z016|0.000{0.000|35615.8(35615.7| 3785.0 | [13.15/2.29{1044.9{1044.9| 6463.8
DE-cgpr-z032|0.000|0.000{35662.8|35662.7| 1949.1 | | 7.72 |1.60{1045.2{1045.2| 3056.6
DE-cgpr-z064|0.000|0.000{35696.9|35696.8| 1003.9 | | 1.66 [1.00|1045.2|11045.2| 1045.5

(@) (b)
T T 100 T T T
100000 cgpr —— A cgpr ——
DE --eesenes DE --eewenes
DE-cgpr-z008 - DE-cgpr-z008
DE-cgpr-z016 - DE-cgpr-z016
DE-cgpr-z032 ---= DE-cgpr-z032 ---=--
Iy DE-cgpr-z064 -=o-= 5 DE-cgpr-z064 --e-=:
2 1e-05 B, j ,
i - U e K
le-10 fi 1
!
le-15 |14 1
H— 1
0 50 100 150 200 250 300 0 2000 4000 6000 8000 10000 12000 14000
time(s) time(s)
Fig. 3. SSE curves for the 10-5-10 (a) and 64-5-65 (b) encoder-decoder problems
(a) (b)
T 1000 T T T
cgpr —+— cgpr —+—
DE -s-s- DE -
DE-cgpr-z008 -+ DE-cgpr-z008 -
DE-cgpr-z016 - DE-cgpr-z016
DE-cgpr-z032 - === DE-cgpr-z032 ===
DE-cgpr-z064 === DE-cgpr-z064 ---o--
v e,
oy e
@ K ‘EY?'““““ Hn;:--.-----n»:-41-»:u:--n......;,,__,,__,_,. 2 100 . |
7 Y g COOOOOE 8800800808888 «
® .
y ‘-,__.\
01 F J
8.
°*o‘e-e_ N
0.01 10
0 50 100 150 200 250 300 0 2000 4000 6000 8000 10000 12000 14000

time(s) time(s)

Fig. 4. SSE curves for the 5 bit (a) and 10-bit (b) counting problems

14

Training neural networks with a hybrid Differential Evolution algorithm

Table 3. Results obtained for the bit counting problems

algorithm (5-12-6) - 5 min (10-16-11)-4h

SSE| © fp/s | bp/s gen SSE | o | fp/s |bp/s| gen
cgpr 0.300{0.355| 9996.4 19996.4| n/a 28.07 |34.67|152.4|152.4| n/a
DE 0.541|0.262|14971.5| 0.0 |140356.9| | 91.93 [10.26(269.6| 0.0 |121326.9

DE-cgpr-z008|0.343|0.295| 9893.8 [9893.7| 2255.8 | [100.73|12.47|153.8|153.8| 1877.8
DE-cgpr-z016|0.250{0.250| 9904.6 [9904.5| 1181.0 | | 89.89 |10.36153.8{153.8| 909.7
DE-cgpr-z032|0.117]0.211] 9912.5 {9912.4| 579.0 76.71 | 6.66 |153.8]|153.8| 434.0
DE-cgpr-z064|0.017]0.090| 9917.7 [9917.6] 278.9 39.94 | 8.00 |153.8]|153.8| 216.7

Table 4. Results obtained for the optdigits dataset

(64-20-10) - 16 h
algorithm SSE| o | fp/s | bp/s | gen
cgpr 54.75/129.910.112{10.112| n/a
DE 36.55(3.56 | 17.3 |0.000 |31121.0
DE-cgpr-z008| 8.15 | 5.51 | 10.0 | 10.0 | 510.9
DE-cgpr-z016| 4.33 | 1.90 | 10.0 | 10.0 | 261.9
DE-cgpr-z032| 1.34 | 0.64 | 10.0 | 10.0 | 130.6
DE-cgpr-z064| 0.35 | 0.40 | 10.0 | 10.0 | 64.0

conjugate gradient method. Figures 3 (b) and 4 (b) may suggest, however, that for
some problems the hybrid algorithm performs much worse. In these cases it is worth
to pay attention to the standard deviation values computed on the basis of all 30
runs performed for each dataset. They are much higher for the conjugate gradient
method, which implies that under pre-defined time constraints the hybrid algorithm
could require a smaller number of longer runs to yield results at an acceptable level
of certainty.

Another advantage of our algorithm is its potential parallelizability. In [10] the
authors proposed a method for parallelizing the original version of DE that is based
on the decomposition of not only the dataset, but also the population of solutions.
The algorithm presented here can be parallelized in a similar manner, with some
additional mechanisms to support backpropagation. This subject is currently being
investigated and will be presented in a following paper.

15

Krzysztof Bandurski, Wojciech Kwedlo

DE-cgpr-z008
DE-cgpr-z016 -
DE-cgpr-z032
DE-cgpr-z064 ---o--

1000}

100 ¢

Xe
““““““““““

SSE

10 ¢ -‘:‘;E‘Bvu-u:uj..‘ TR]
.

L
Sogy. T rana
1r 600
S0
o0

0.1

0 10000 20000 30000 40000 50000
time(s)

Fig. 5. SSE curves for the optdigits problem

References

[1]

(2]

[7]

[8]

[9]

16

E. H. L. Aarst and J. Korst: Simulated Annealing and Boltzmann Machines,
John Wiley, 1989.

C. Blake, E. Keogh, and C. J. Merz: UCI repository of machine learn-
ing databases, University of California, Dept. of Computer Science,
http://www.ics.uci.edu/~mlearn/MLRepository.html, 1998.

J. Brest, S.Greiner, B. Boskovic, M. Mernik, and V.Zumer: Self-adapting
control parameters in differential evolution: A comparative study on numeri-
cal benchmark problems, IEEE Transactions on Evolutionary Computation,
10(6):646-657, 2006.

C. Charalambous: Conjugate gradient algorithm for efficient training of ar-
tificial neural networks, Circuits, Devices and Systems, IEE Proceedings G,
139:301-310, 1992.

Paulo Cortez, Miguel Rocha, and Jos Neves: A lamarckian approach for neural
network training Neural Processing Letters, 15:105-116, 2002.

R. O. Duda, P. E. Hart, and D. G. Stork: Pattern Classification, John Wiley and
Sons, 2001.

R. Fletcher and C. M. Reeves: Function minimization by conjugate gradients,
The Computer Journal, 7:149-154, 1964.

M. R. Hestenes and E. Stiefel: Methods of conjugate gradients for solving linear
systems, Journal of Research of the National Bureau of Standards, 49:409-436,
1952.

J. llonen, J. K. Kamarainen, and J. Lampinen: Differential evolution training
algorithm for feed-forward neural networks, Neural Processing Letters, 17:93—
105, 2003.

Training neural networks with a hybrid Differential Evolution algorithm

[10]

[11]
[12]

[13]

[14]
[15]

[16]

W. Kwedlo and K. Bandurski: A parallel differential evolution algorithm for
neural network training, In Parallel Computing in Electrical Engineering, 2006.
PARELEC 2006. International Symposium on, pages 319-324. IEEE Computer
Society Press, 2006.

Z. Michalewicz: Genetic Algorithms + Data Structures = Evolution Programs,
Springer Verlag, 1996.

M. E. Mgller: A scaled conjugate gradient algorithm for fast supervised learn-
ing, Neural Networks, 6(4):525-533, 1993.

Brian J. Ross: A lamarckian evolution strategy for genetic algorithms, In
Lance D. Chambers, editor, Practical Handbook of Genetic Algorithms: Com-
plex Coding Systems, volume 3, pages 1-16. CRC Press, Boca Raton, Florida,
1999.

Phillip H. Sherrod: Dtreg - predictive modeling software, 2008.

R. Storn and K. Price: Differential evolution - a simple and efficient heuristic
for global optimization over continuous spaces, Journal of Global Optimization,
11:341-359, 1997.

B. Subudhi and D. Jena: Differential evolution and Levenberg Marquardt
trained neural network scheme for nonlinear system identification, Neural Pro-
cessing Letters, 27(3):285-296, 2008.

UCZENIE SIECI NEURONOWYCH HYBRYDOWYM

ALGORYTMEM OPARTYM NA DIFFERENTIAL
EVOLUTION

Streszczenie: W artykule przedstawiono nowa, hybrydowa metode uczenia sieci neurono-
wych, taczca w sobie algorytm Differential Evolution z podejsciem gradientowym. W nowej
metodzie po kazdej generacji algorytmu Differential Evolution kazde nowe rozwiazanie, po-
wstate w wyniu dzialania operator6w krzyzowania i mutacji, poddawane jest kilku iteracjom
algorytmu optymalizacji wykorzystujacego metode gradientéw sprzezonych. Wyniki ekspe-
rymentéw wskazuja, ze nowy, hybrydowy algorytm ma szybsza zbiezno$¢ niz standardowy
algorytm Differential Evolution. Mimo, iz zbiezno$¢ ta jest wolniejsza, niz w przypadku
klasycznych metod gradientowych, algorytm hybrydowy potrafi znacznie lepiej unikaé mi-
niméw lokalnych.

Stowa kluczowe: sieci neuronowe, differential evolution, gradienty sprzezone, minima lo-
kalne

17

