PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Energetic approach to direct and inverse heat conduction problems with Trefftz functions used in FEM

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
International Conference on the Trefftz Method (5 ; 2008 ; Leuven, Belgium)
Języki publikacji
EN
Abstrakty
EN
In the paper the stationary 2D inverse heat conduction problems are considered. To obtain an approximate solution of the problems three variants of the FEM with harmonic polynomials (Trefftz functions for Laplace equation) as base functions were used: the continuous FEMT, the non-continuous FEMT and the nodeless FEMT. In order to ensure physical sense of the approximate solution, one of the aforementioned physical aspects is taken into account as a penalty term in the functional, which is to be minimized in order to solve the problem. Three kinds of physical aspects that can smooth the solution were used in the work. The first is the minimization of heat flux jump between the elements, the second is the minimization of the defect of energy dissipation and third is the minimization of the intensity of numerical entropy production. The quality of the approximate solutions was verified on two test examples. The method was applied to solve inverse problem of stationary heat transfer in a rib.
Rocznik
Strony
171--182
Opis fizyczny
Bibliogr. 20 poz., tab., wykr.
Twórcy
autor
autor
  • Kielce University of Technology, Faculty of Management and Computer Modelling, Al. 1000-lecia P. P. 7, 25-314 Kielce, Poland
Bibliografia
  • [l| M.J. Cialkowski. Solution of inverse heat conduction problem with use new type of finite element base functions. In: B.T. Maruszewski, W. Muschik, A. Radowicz, eds., Proceedings of the International Symposium on Trends in Continuum Physics, 64-78. World Scientific Publishing, Singapore, New Jersey, London, Hong Kong, 1999.
  • [2] M.J. Cialkowski, A. Frąckowiak. Heat Functions and Their Application for Solving Heat Transfer and Mechanical Problems (in Polish). Poznan University of Technology, 2000.
  • [3] M.J. Cialkowski, A. Frąckowiak, K. Grysa. Solution of a stationary inverse heat conduction problems by meansof Trefftz non-continuous method. Int. J. Heat Mass Transfer, 50: 2170-2181, 2007.
  • [4] M.J. Cialkowski, A. Frąckowiak, K. Grysa. Physical regularization for inverse problems of stationary heat conduction. .J. Inv. Ill-Posed Problems, 15: 1-18, 2007.
  • [5] M.J. Cialkowski. S. Futakiewicz, I.. Hozejowski. Heat polynomials applied to direct and inverse heal conduction problems. In: B.T. Maruszewski, W. Muschik, A. Radowicz, eds., Proc. of the International Symposium on Trends in Continuum Physics, 79-88. World Scientific Publ., Singapore-New Jersey-London-Hong Kong, 1999
  • [6] M.J. Ciałkowski, S. Futakiewicz, L. Hożejowski. Method of heat polynomials in solving the inverse heat conduction problems. ZAMM - Z. Angew. Math. Mech., 79: 709-710, 1999.
  • [7] S. Futakiewicz. Heat Functions Method for Solving Direct and Inverse Heat Conduction Problems) (in Polish).PhD Thesis, Poznan University of Technology, 1999.
  • [8] S. Futakiewicz, K. Grysa, L. Hożejowski. On a problem of boundary temperature identification in a cylindrical layer. In: B.T. Maruszewski, W. Muschik, A. Radowicz, eds., Proc. of the International Symposium on Trends in Continuum Physics, 119-125. World Scientific Publ., Singapore-New Jersey-London-Hong Kong, 1999.
  • [9] S. Futakiewicz, L. Hozejowski. Heat polynomials method in the n-dimensional direct and inverse heal conduction I problems. In: A.J. Nowak, C.A. Brebbia, R. Bielecki, M. Zerroukat, eds., Advanced Computational Method in\ Heat Transfer V, 103-112. Computational Mechanics Publications, Southampton. IK and Boston, USA, 1998.
  • [10] S. Futakiewicz, L. Hozejowski. Heat polynomials in solving the direct and inverse induction problems in a cylindrical system of coordinates. In: A.J. Nowak, C.A. Brebbia, R. Bielecki. M. Zerroukat, eds., Advanced Computational Method in Heat Transfer V, 71-80. Computational Mechanics Publications, Southampton. IK and Boston, USA, 1998.
  • [11] L. Hożejowski. Heat Polynomials and their Application for Solving Direct and Inverse Heat Conduction Problems (in Polish). PhD Thesis, Kielce University of Technology, 1999.
  • [12] A. Mating. Solution of the Three-dimensional Wave Equation by Using Wave Polynomials. PAMM - Proc. Math. Mech., 4: 706-707, 2004.
  • [13] A. Maciąg. Solution of the Three-dimensional Wave Polynomials. Mathematical Problems in Engineering, 5: I 583-598, 2005-
  • [14] A. Maciąg. Wave polynomials in elasticity problems. Engrg. Trans., 55(2): 129-153, 2007.
  • [15] A. Maciąg, T. Orzechowski, D. Sznajder. Analysis of the heat transfer from fin longitudinal surface. PAMM Proc. Appl. Math. Mech., 2(1): 366-367, 2003.
  • [16] A. Maciąg, J. Wauer. Solution of the two-dimensional wave equation by using wave polynomials. J.. Engrg. Math., 51(4): 339-350, 2005.
  • [17] A. Maciąg, A., J. Wauer. Wave Polynomials for Solving Different Types of Two-Dimensional Wave Equations. Computer Assisted Mechanics and Engineering Sciences, 12: 87-102, 2005.
  • [18] P.C. Rosenbloom, D.V. Widder. Expansion in terms of heat polynomials and associated functions. Trans. Amer. I Math. Soc, 92: 220-266, 1959.
  • [19] E. Trefftz. Ein Gegenstiick zum Ritzschen Verfahren. Proc. 2nd International Congress of Applied Mechanics: I 131-137, Zurich. L926.
  • [20] A. P.. Zieliński, I. Herrera. Trefftz method: fitting boundary conditions. Int. J. Numer. Methods Engrg., 24(5): 871-891, 1987.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0033-0061
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.