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Abstract: This paper presents an adaptive neural network approach to control of mechatronics objects. This approach  
is applied in adaptive control of DC motor in SISO-system and 3-DOF robot arm actuators in MIMO system. Results  
of computer simulation and comparison with other control techniques are introduced. 

1. INTRODUCTION  

Currently there are a lot of approaches to mechatronics 
objects control. Linear algorithms are very easy to employ, 
they provide acceptable results in case of using linearized 
models. Still, implementing such algorithms with unknown 
control object parameters and variable external disturbances 
leads to unsatisfactory performance.  

So-called “dynamic” control methods based on solving 
the inverse dynamics problem became widespread.  
Realizability is the main problem of such algorithms appli-
cation. Besides, in case of inaccurate control object parame-
ters estimation such approach does not give satisfactory 
results. Adaptive algorithms provide efficient control  
in case of parameter and external disturbances uncertainty. 
However, implementation complexity makes it difficult  
to use them wide in engineer practice. 

The ability of artificial neural networks (ANN) (Hagan 
and Demuth, 1999; Hunt et al., 1992; Murray et al., 1992; 
Narendra and Mukhopadhyay, 1997; Omidvar and Elliot, 
1997) to represent non-linear systems makes them  
a powerful tool for dynamic systems modeling and control. 
Multilayered perceptron networks are capable of perfor-

ming adaptive controller, identifier and optimizer tasks  
in control systems. Neural network control algorithms  
are easy to employ, however some problems of parametric 
and structural synthesis remain unsolved.  

Another considerable shortcoming of ANN is the neces-
sity of initial neural network learning phase. That is unsuit-
able for control tasks as the uncertainty of initial ANN 
weights means that during the learning phase controller 
cannot be turned on. 

In this paper a universal ANN-based control algorithm 
with on-line learning (Omidvar and Elliot, 1997)), which 
doesn’t need the initial learning phase, is investigated. An 
application of such an algorithm in control of DC motor in 
SISO-system and 3-DOF robot arm actuators in MIMO 
system is reviewed. 

2. ANN CONTROLLER 

Structure of ANN-based control algorithm mentioned 
above is presented at Fig. 1. As an input controller vector qd 
a vector of desired object coordinates is used.  
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Fig. 1. Neural network controller structure 
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According to Eq. 1 ANN forms a control signal f(x) 
with VW ˆ,ˆ the estimated values of the target ANN weights 
W (from input to hidden layer), V (from hidden to output 
layer) and  σ(.) – hidden layer sigmoid activation function. 
These estimates will be provided by the weight tuning algo-
rithm. 
( ) ( )ˆ ˆ ˆ .T Tf σ=x W V x                                                      (1) 
Control vector input U is defined as: 

( )ˆ( ) .V= + −U f x K e P                                                       (2) 

With  ˆ( )f x  – neural network functional estimate  
of nonlinear object function. Controller stability is provided 
by proportional control block with KV coefficient matrix.  
P – robustness providing function. 

3. SISO DISCRETE-TIME CONTROL SYSTEM 

5 hp DC motor was chosen as a control object for case 
of SISO discrete-time control system. As the simulation 
was held in mathematic modeling environment MatLab 
Simulink, ready to use model of DC motor with given pa-
rameters presented in Simulink SimPowerSystems library 
was used. According to proposed controller structure  
(Fig. 1) a model of discrete ANN-based control system was 
implemented in Simulink.  

ANN learning occurs on-line every time step according 
to Eq. 3: 
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With Г, αi – scalar design parameters, B1 – known pa-
rameter matrix,  ( )( )1

ˆ ( )k x kϕ ϕ=  – sigmoid activation 

function, ( )( )2
ˆˆ ( ) ( ) ( )Tk k kϕ ϕ ϕ= V x  – output of ANN 

hidden layer, r(k) – filtered tracking error and 

1 1
ˆ ˆˆ ( ) ( ) ( )Tk k kϕ=y V . As there are no analytic synthesis 

methods for investigated control algorithm, coefficients 
were selected empirically during computer simulation. 

3.1. Simulation Results 

Results of control system simulation in conventional 
operating regimes presented at Fig. 2, 3. Step variation  
of torque payload is used to show adaptive abilities  
of control algorithm. To compare results obtained a PD 
controller was also created in Simulink. Results, shown  
at Fig. 2, 3 (left plots for ANN controller, right for PD), 
obtained with zero initial ANN weights, 50 neurons  
in hidden layer and 0.01s step time. 
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Fig. 2. Step input with variable torque payload simulation results (ANN and PD) 
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Fig. 3. Sin wave input with variable torque payload simulation results (ANN and PD) 
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4. MIMO CONTROL SYSTEM 

4.1. Control object 

PUMA-560 is 6-link anthropomorphic robot. DC  
motors with independent excitation are used as actuators. 
Robot links a connected by 5-class joint, so robot location 
in Cartesian coordinate system is defined by generalized 
coordinates vector q=[ q1, q2, q3, q4, q5, q6]T, with qi – i-th 
joint coordinate relative to i-1. With elastic deformation  
of robot links ignored, according to Lagrange's equation  
a matrix equation for robot mechanics was derived as: 

( , ) ( , , ) ( , ) .⋅ + + =Α q ξ q B q q ξ C q ξ τ                                 (4) 

With A – manipulator matrix, B - Coriolis and centrifu-
gal forces vector, С – gravity forces vector, τ - generalized 
forces vector, ξ – manipulator parameter matrix.  

Actuator dynamics is defined in Eq. 5, with RA – arma-
ture resistance, LA - armature inductance, Ce, Cm – construc-
tive constants, iA – armature current, U – armature voltage, 
M - electromagnetic torque. 

,    .
A A A

A
e M A m

di
U R i C L M C i

dt
= + Ω + =                           (5) 

Motor's instantaneous output torque of i-th link corre-
sponds to generalized forces vector as: 

.i i i i ig M k qτ = −             (6) 

With gi – reduction gear ratio, ki – viscous friction co-
efficient of i-th link. 

According to Eq. 4-6, robot and actuators constructional 
parameters (Soloway and Haley, 1996) in mathematic mo-
deling environment MatLab PUMA-560 robot manipulator 
dynamic model was developed. 

4.2. Adaptive ANN Controller 

 For MIMO system a continuous case of ANN learning 
algorithm was used (Eq. 7).  
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                     (7) 

With σ=σ(VTx) – hidden layer output, F, G – algorithm 
tuning coefficient positive-definite matrices, k – scalar 
tuning coefficient, e – tracking error.   

With ( ) ( ) ( )( )1z z zσ σ σ′ = −  – expression for sigmoid 
activation function derivative and I – identity matrix define:  

( )( ) ( )( )T T T .diag diagσ σ′ = ⋅ −⎡ ⎤⎣ ⎦σ We V x I V x We    (8) 

Robust term provides algorithm stability with variation 
of ANN gains and weights according to: 

( )Z MF
= − + ⋅P K Z Z e                                                   (9) 

With KZ – tuning positive-definite matrix,  ZM – maxi-
mum value of  ||Z||F – Frobenius norm of all ANN weights. 

0
.

0
=

W
Z

V
            (10) 

To compare results received, three other controllers 
were implemented in MatLab. 

PD controller was developed according to Eq. 11. 

.P D= +U k e k e          (11) 

With U – control vector, kp, kD – constant diagonal ma-
trices, e=qd–q  – tracking error, qd – desired joint trajectory. 

Dynamic controller is described by Eq. (12), with 
( ), ( ), ( )t t td d dq q q  – desired joint trajectories, velocities  

and accelerations, K, K2, K1 – diagonal matrices providing 
algorithm asymptotic stability. 
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Regressive adaptive controller (Narendra  
and Mukhopadhyay, 1997)  with unknown robot parameters 
estimation function defined as: 

, .= ⋅ + =aU Y ψ K e ψ FYe         (13) 

With Y – regression matrix derived from robot dynamic 
model, Ka, F – constant matrices, defining rate of conver-
gence, Ψ –  unknown robot parameters vector. 

4.3. Simulation Results 

      Results of MIMO control system simulation  
in different operating regimes presented at Fig. 4-7. As the 
operating regimes were chosen: step control input qi

p=c.1(t) 
for each joint, with c – constant coefficient, 1(t) – step fun-
ction; equivalent harmonic regime of i-th joint in form  
of qi

p=(ω2
i/εi).sin((εi/ωi)t), with ωi – joint maximum speed,  

εi  – joint maximum acceleration. Results presented for 3-rd 
joint as its dynamics is the most dependent. Besides, during 
simulation parameter uncertainty is introduced– variation  
of robot hand payload at 10-th second. 

Transient processes for PD controller are shown  
at Fig. 5: for dynamic control – at Fig. 6; for adaptive robot 
hand mass definition regressive algorithm – at Fig. 7.  
Application of ANN adaptive controller for robot actuators 
control presented at Fig. 6. At start of simulation initial 
weights of ANN are zero. 
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Fig. 4. PD robot control 

 
Fig. 5. Dynamic robot control 

 
Fig. 6. Adaptive regressive robot control 

 
Fig. 7. ANN adaptive robot control 

 
 

 
 



acta mechanica et automatica, vol.2 no.4 (2008) 

 85

4.4. Results Discussion 

Application of neural network controller allows ob-
taining control performance not worse than with PD,  
dynamic or adaptive regulators, but in much more heavy 
conditions of parametric and functional uncertainty. Adap-
tive neural network controller has some advantages: it can 
be implemented on a low performance microcontroller;  
it does not require accurate estimation of control object 
parameters, therefore neural network weights in initial state 
may have zero values; it has an ability of real-time on-line 
network weights tuning. 

5. SUMMARY 

During this research the following results were  
obtained: 
− application package for estimating capability of using 

different control techniques in dynamic objects control 
tasks was created in mathematic modeling environment 
MatLab Simulink; 

− comparative investigation of control algorithms  was 
held; 

− algorithm was confirmed to be a promising control 
method, which can be easily implemented in dynamic 
systems control tasks in case of parametric and func-
tional uncertainty. 
Further ANN algorithms efficiency increasing requires 

their modification in order receive quasi-optimal structural 
and parametric synthesis procedures. 
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