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Abstract: The variation principle is applied for defining a crack in the solid body. Crack propagation in non-homogeneous 
media has been considered. It is shown that electromagnetic fields in the material are essentially affecting the trajectory.  
The crack trajectory stability has been studied as function of fracture energy, phase portraits of the trajectory in different  
media have been built, and various attractor types have been revealed. Different crack morphologies from single straight  
and oscillating crack propagation to straight double crack propagation were theoretically founded. 

1. INTRODUCTION 

The ability to determine the direction of crack growth  
as a function of medium properties or its deformed state  
is useful. This ability is the rule rather than the exception 
when the technology of material fabrication can control the 
praise nature of the material micrstructure. These provide 
the means to suppress or enhance crack propagation.  
In other words, the direction of crack growth can be prede-
termined if the loadings are known.  

The aim of the present paper is to find the conditions  
of the material properties for crack propagation in the 
wave-guide mode. Studied are the crack path and its stabil-
ity in inhomogeneous media by application of variational 
principle. The stability and stochastization of the solution  
of the crack trajectory equation are investigated.  

Consider the medium that is stretched along the y-axis 
from infinity. We believe that the crack propagate  
in such a way that the energy involved in fracture process  
is minimal along the trajectory of the crack. The variational 
equation for specific energy (i.e. energy per unit length)  
has the general form Miklashevich and Chigarev (2002), 
Miklaschevich (2005).  
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where γ is the specific surface energy and w(x, y) the spe-
cific potential deformation energy while dl stands for the 
differential length, δ the variation symbol and L the inte-
gration path. For the brevity we can introduce the func-
tional of specific energy γ+ w(x, y)=F(x, y, y’, ŷ) in equa-
tion 1.  

The Euler’s equation for the problem (1) which follows 
from condition of minimum of functional for functional  
of elastics energy is given in standard way by Miklashevich 
(2005). Because we investigate the stability of trajectory  
not stability of the process of fracture we obtain  
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Now assume that the boundary conditions are chosen in 
such a way that they maintain the stress state unchanged 
during the crack propagation („dead stress”). For the re-
duced case media properties relative smooth changing  
F ≠ F(x, y, y’)=F(x, y), equation 2 can be written in the 
form Miklashevich and Chigarev (2002). 
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For the sufficiently smooth crack term y’2 to vanish, 
there results the crack trajectory equation:  
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have been adopted.  

2.  CRACK PROPAGATION THROUGH 
      STRUCTURE BOUNDARY 

Crack propagation across structural non-homogeneities 
represents a significant practical interest, for example,  
for composites and structured materials. The theory of 
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crack propagation through the structure boundary in state-
ment of “ideal mechanics of fracture” started from well 
known articles of Dundurs. In the elastic formulation, an 
idealized problem of interaction of the crack with non-
homogeneity (a borders or a dislocation) can be solved, for 
example, by the method of complex potentials of Muskhel-
ishvili. Moreover, all the real materials have internal struc-
tural borders (for example, grain structure, walls of disloca-
tions, etc.) and “ideal” theory may be corrected by the more 
physical way. In the variational statement, the problems  
of accounting borders are connected with discontinuity  
of function F(x,y) in borders 0, Li, i=1,...k, etc. These 
causes a necessity to consider, at varying the fracture  
energy, piecewise smooth functionals. Equation for the 
energy functionals, in case of crack passage across i bor-
ders should be rewritten in the form of: 
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where A, B starting and end point of the crack, respectively 
and lim ε=0. Term i
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 in (6) is the additional energy, 

connected with a Li  sharp body boundary.  
In real materials, a transition from one material  

to another takes place in a narrow zone of contact of grains 
(layers). The width of this transition zone depends on tech-
nological and other factors and defines the integration in-
terval in the second term of expression (6). Only for an 
ideal material, the width of the transition zone from one 
material to another is zero. According to our problem 
statement, the crack approaches the border “almost nor-
mally”, and the fracture energy, connected with the exis-
tence of the border, is the energy required for separation of 
the material along the layer. In the statement of the problem 
of ideal fracture: 
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where D(x) is the delta-function, dU(1) is the bond energy 
of the border number one (Miklashevich, 2002). 

However, real materials do not have any zero transition 
zones. Then, with account of the real width of contact zone 
2ε, the delta-function can be approximated by a smooth 
function: 
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In this case it is not possible to have a crack propagating 
in materials with stabilized trajectory (Miklashevich, 2005, 
2008). Unfortunately, because of the complexity of the 
coefficient, we managed to obtain a precise analytical solu-
tion of equation (4) only for the limited case of special form 
of the coefficients in equation for linear media  
(Miklashevich, 2008).  

 
 
 
 

 

3. CRACK BEHAVIOUR IN PIECE-WISE 
 STRUCTURES 

The equation (4) was analyzed in case of ideal piece-
wise composite materials (Miklashevich and Chigarev, 
2002; Miklaschevich, 2005. For the piece-wise material  
the media properties can be taken in the form  
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This corresponds to representation of ln Q(y) in the 
form as Miklashevich and Chigarev (2002): 
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In this case we can find the condition of stochastization 

of the crack trajectory (Miklashevich and Chigarev, 2002). 
Consider the stability of equation (4) when the medium's 
properties change smoothly along the x axes. Let the media 
properties expressed by Eq.(5) be in the form 

( )( )
,

ln , cos
x

Q x y xδ γ ω= + .          (7) 

The above representation corresponds to body fracture 
energy in form  

( ) ( )( )
1

sin
exp

x x
Q x C

δ ω γ ω

ω

− −
= ,  

where C1 is the integration constant. The behaviour of the 
non-homogeneity is in general exponential (the slope de-
gree of the exponent is regulated by index δ), Fig. 1. A 
deviation of the function from smoothness (scatter of the 
properties  
of the composite by layers) is regulated by parameter γ  
(See Fig. 1).  
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Fig.1. Dependence of fracture energy from coordinate x. Parame- 
           ters ω = 15, δ = 1. Solid curve γ = 1, dotted curve γ = 15 

Substitute the Eq. (7) into (4) we obtain the well known 
equation of Duffing type (Lichtenberg and Liberman, 1983) 
in form  
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3 cosy y y y xεδ δ γ ω− + + = +  
The crack bechaviour in last case presented in Fig. 2, 

Fig. 3. and whole is stable.  

 
Fig.2. The crack trajectory behavior. Material parameters ara  
            ε = 0.1, γ = 2.19, ω = 0.01, δ= 1; Initial conditions  
            y(0) = 0; y’=0,001 

 
Fig. 3. Phase portrait. Initial conditions y(0) = 0; y’(0) = 0.000001 
           dotted line, y(0) = 0.001; y(0) = 0,00005 solid line 

The considered models of non-homogeneity correspond 
to the conclusion that a change of non-homogeneity along 
axis Y ensures a waveguide character of crack propagation 
along axis Y. In particular, a cut-out may play the role  
of such waveguide. However, even a rigid determination  
of the initial and final points is insufficient to have the 
crack trajectory y(x) to be a deterministically forecasting 
function. 

4. INFLUENCE OF ELECTROMAGNETIC FIELD  
   TO THE TRAJECTORY 

In case when in a material the set of actuators is embed-
ded, the electromagnetic field can be presented in a mate-
rial. The general theory of fracture of piezoelectric mate-
rials can be found in Parton and Kudriavcev (1998).  
A possibility to apply the crack energy density criterion  
to crack propagation in piezoelectric materials was detail 
justified earlier (Zuo and Sih, 2000). By using the well-
known L. I. Sedov’s decomposition of the full crack  
problem into subproblems, we may present the full crack 
problem in piezoelectric medium as superposition of me-
chanical and electrical problems. Let’s take the field as 
pure periodical (sinusoidal). In this case the body fracture 
energy can be presented in form of  

( ) ( )( )( )1 1Q x C exp x sin x / C cos xδ ω γ ω ω= − − + Ω  
 
The crack bechaviour in the last case presented in Fig. 

4, Fig. 5. and essentialy differ from stable. 

 
Fig.4. The crack trajectory behavior. Ω=10ω 

 
Fig. 5. Phase portrait for crack under electromagnetic field affect. 

 

5. DISCUSSION AND CONCLUSION 

The proposed approach allows analysing the depen-
dence of the crack behaviour from the properties of the 
medium, through which the crack propagates, finding the 
areas of unstable propagation, and assessing the stochasti-
zation (randomization) length (Miklashevich and Chigarev, 
2002; Miklaschevich, 2005). Forecasting of the crack tra-
jectory in case of meeting the stochastization condition in 
possible only through use of probability methods, for ex-
ample, on the basis of Markov process theory. 

The forecasted crack behaviour is logically explained  
in the model of composites with adhesion links. The initial 
instability (chaotic state) of propagation of a main crack 
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may be physically realized only through formation of lat-
eral microcracks in the boundaries of the structural ele-
ments  
of the composite. In development of the destruction proc-
ess, the damage will accumulate in the layers passed by the 
crack, and a weak relaxation on destruction of adhesion 
links will be insufficient, the energy will start to liberate 
along the trajectory of the mainline crack and stabilize  
it (Miklashevich, 2008). 

The considered problem may be an example of layered 
medium synthesis, in which the boundary is a barrier  
in the crack route, since in the considered example,  
the boundary may break the condition y’2<<1, the crack 
propagates along the boundary, and then along the layer 
again. Thus, stochastization of the crack trajectory  
in a layered medium leads to an impossibility to forecast  
its propagation and, therefore, to impossibility of taking 
measures, at the stage of designing and manufacturing  
of an article, to improve crack-resistance. On the other 
hand, the crack stochastization that enables its propagation 
along the fibering ensures the crack-resistance of the arti-
cle, since the shear fracture viscosity is higher than the 
fracture destruction (Miklashevich, 2002). 

In the presence of the electric field, the crack behaviour 
is much less stable than in the absence thereof. At crack 
development, bifurcation transitions are possible (sharp 
outbreaks at phase diagrams). The general analysis of the 
crack behaviour indicates that the presence of the electric 
field essentially increases the chaotic behaviour of the  
trajectory. It follows from Figs. 4, 5 that even in case  
of high-frequency electromagnetic field, no “suppression” 
of mechanical oscillations takes place, and the trajectory 
has multiple bifurcation points (sharp breaks of phase tra-
jectory). 
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