ZASTOSOWANIE DWUWYMIAROWEGO ROZKŁADU PRAWDOPODOBIEŃSTWA INICJACJI PĘKNIĘĆ W OBLICZENIACH TRWAŁOŚCI ZMĘCZENIOWEJ

Aleksander KAROLCZUK^{*}, Jacek SŁOWIK^{**}

* Katedra Mechaniki i Podstaw Konstrukcji Maszyn, Wydział Mechaniczny, Politechnika Opolska, ul. Mikołajczyka 5, 45-271 Opole ** Instytut Lotnictwa, Aleja Krakowska 110/114, 02-256 Warszawa

a.karolczuk@po.opole.pl, jrslowik@op.pl

Streszczenie: W pracy przedstawiono metodę obliczania trwałości zmęczeniowej elementów o niejednorodnych rozkładach naprężeń zmiennych bazującą na dwuwymiarowym rozkładzie prawdopodobieństwa zniszczenia elementu. Zaproponowany dwuwymiarowy rozkład inicjacji pęknięcia zmęczeniowego wykorzystuje standardowe charakterystyki zmęczeniowe i pozwala na obliczenia trwałości zmęczeniowej dla dowolnego poziomu prawdopodobieństwa. Metoda została przeanalizowana przy wykorzystaniu badań zmęczeniowy próbek wykonanych z trzech stali konstrukcyjnych o różnej geometrii.

1. WPROWADZENIE

Złożone kształty elementów maszyn i konstrukcji oraz często sposób obciążenia, generuje powstawanie obszarów w materiale o niejednorodnym stopniu uszkodzenia zmęczeniowego. Badania doświadczalne wykazują, że trwałości takich elementów wyznaczone na podstawie maksymalnych naprężeń lokalnych są zawyżone w stosunku do trwałości eksperymentalnych (Papadopoulos i Panaskaltsis, 1996; Morel i Palin-Luc, 2002).

Z przeglądu literatury specjalistycznej można wyróżnić dwie grupy metod, które uwzględniają wpływ gradientu naprężeń na trwałość zmęczeniową. Pierwsza, bardziej rozpowszechniona grupa to metody deterministyczne, w których trwałość zmęczeniową wyznacza się ściśle bez uwzględnienia probabilistycznego charakteru zmęczenia materiału. Dominują tutaj metody polegające na zredukowaniu pola naprężeń do naprężeń lokalnych poprzez proces uśredniania (Morel i Palin-Luc, 2002). Druga grupa to metody probabilistyczne bazujące na koncepcji najsłabszego ogniwa, w której zakłada się, że wielkość obszaru narażonego na zmienne naprężenia o różnych poziomach wpływa na prawdopodobieństwo wystąpienia pęknięcia.

W pracy zaprezentowano probabilistyczną metodę szacowania trwałości zmęczeniowej elementów konstrukcyjnych bazującą na koncepcji najsłabszego ogniwa (the weakest link concept, (Weibull, 1939, 1949; Bomas i inni, 1999; Delahay i Palin-Luc, 2006). W przeciwieństwie do klasycznego w tej koncepcji podejścia polegającego na wyznaczeniu rozkładu prawdopodobieństwa wytrzymałości zmęczeniowej Pz-σa, przy danej trwałości zmęczeniowej N (liczby cykli do zniszczenia), przedstawiona w pracy metoda uwzględnia wzrost prawdopodobieństwa wystąpienia pęknięcia ze wzrostem zrealizowanej liczby cykli obciążenia. W obliczeniach przyjęto rozkłady typu Weibulla, których parametry uzależniono od lokalnych wartości naprężeń/odkształceń ekwiwalentnych i standardowych charakterystyk zmęczeniowych.

2. OPIS METODY

Koncepcja najsłabszego ogniwa, która leży u podstaw proponowanej metody oraz teorii Weibulla została sformułowana już w latach dwudziestych XX wieku. Podstawowe założenia koncepcji najsłabszego ogniwa to: (i) dany element konstrukcyjny zawiera statystycznie rozmieszczone różnego rodzaju mikro defekty; (ii) inicjacja pęknięcia nastąpi w pewnym elementarnym obszarze (ogniwie) elementu, który zawiera "najbardziej niebezpieczny defekt"; (iii) wystąpienia inicjacji pęknięć zmęczeniowych w poszczególnych ogniwach elementu są od siebie niezależne.

Dla kolejnych elementów o tej samej geometrii i obciążeniu "najbardziej niebezpieczny defekt" charakteryzuje się innymi cechami, co prowadzi do inicjacji pęknięcia przy innej liczbie cykli *N*. W przypadku niejednorodnego pola naprężeń dany element jest dzielony na podobszary. Prawdopodobieństwo, że w całym elemencie nie pojawi się pęknięcie w przedziale [0, *N*] oznacza, że inicjacja pęknięcia nie nastąpi w żadnym elementarnym podobszarze. Oznaczając przez $P_{tr}^{(i)}$ prawdopodobieństwo, że podobszar (*i*) nie zainicjuje pęknięcia w pewnym przedziale liczby cykli [0, *N*] to prawdopodobieństwo P_{tr} dla całego elementu jest iloczynem prawdopodobieństw $P_{tr}^{(i)}$:

$$P_{tr} = \prod_{i=1}^{i=k} P_{tr}^{(i)} , \qquad (1)$$

gdzie k jest liczbą wszystkich podobszarów (ogniw).

Przyjęcie wykładniczej postaci rozkładu $P_{tr}^{(i)} = e^{-f(\sigma^{(i)})}$

prowadzi do zastąpienie iloczynu Π we wzorze (1) operacją sumowania (całkowania) wykładnika liczby *e*:

 $P_{tr} = P_{tr}^{(i)} \cdot P_{tr}^{(i+1)} \dots = e^{-f(\sigma^{(i)})} \cdot e^{-f(\sigma^{(i+1)})} \dots = e^{-f(\sigma^{(i)}) - f(\sigma^{(i+1)})} \dots$

Taką postać rozkładu prawdopodobieństwa zmiennej losowej zaproponował Weibull w 1939 roku, uzależniając rozkład $P_{tr}^{(i)}$ od poziomu naprężenia $\sigma^{(i)}$. Klasyczna (Weibullowska) postać rozkładu prawdopodobieństwa $P_z = 1 - P_{tr}$ zniszczenia elementu jest następująca:

$$P_{z} = 1 - e^{-\frac{1}{\Omega_{0}} \int_{\sigma}^{\sigma} g(\sigma) d\sigma}, \ g(\sigma) = \left(\frac{\sigma}{\sigma_{u}}\right)^{m}, \ g(\sigma) = \left(\frac{\sigma - \sigma_{0}}{\sigma_{u}}\right)^{m}, \ (2a, 2b, 2c)$$

gdzie Ω_0 jest objętością lub powierzchnią referencyjną elementu charakteryzującego się rozkładem (2). Natomiast $g(\sigma)$ jest funkcją tzw. "ryzyka zniszczenia", której postać zależy od własności materiału. Weibull zaproponował dwu (2b) i trzy (2c) parametrową postać funkcji $g(\sigma)$, gdzie σ_0 , σ_u , *m* są odpowiednio naprężeniowymi parametrami: przesunięcia, skali i kształtu rozkładu (2a). Z uwagi na różne własności materiału na jego powierzchni oraz w objętości, Weibull rozważał wyznaczenie rozkładu prawdopodobieństwa zniszczenia osobno w objętości V materiału ($\omega = V$) jak i na powierzchni swobodnej A elementu ($\omega = A$). W przypadku procesów zmęczeniowych rozkład prawdopodobieństwa zniszczenia elementu jest dwuwymiarową funkcją amplitudy naprężenia σ_a i liczby cykli N do zniszczenia elementu $P_z = f(\sigma_a, N)$. Postać takiej funkcji nie została

jednak zaproponowana przez Weibulla. Inni badacze (Bomas i inni, 1999; Delahay i Palin-Luc, 2006) rozwijali tą koncepcję, ale ich badania skoncentrowały się na wyznaczeniu funkcji typu $P_z = f(\sigma_a, N = \text{poziom granicy zmęcze-} nia), czyli na zagadnieniu czy element ulegnie zniszczeniu lub nie, bez względu na liczbę cykli.$

W niniejszej pracy przedstawiono koncepcję obliczania trwałości zmęczeniowej elementów na podstawie dwuwymiarowego rozkładu prawdopodobieństwa $P_z=f(D, N)$, gdzie D jest uogólnioną zmienną zależną od poziomu naprężenia/odkształcenia. Ogólna postać takiego rozkładu jest analogiczna do klasycznego rozkładu Weibulla (2a), czyli:

$$P_{z} = 1 - e^{-\frac{1}{\Omega_{0}} \int_{\omega} h(N,D) d\omega}, \qquad (3)$$

gdzie funkcja "ryzyka zniszczenia" h zależy od dwóch zmiennych: D i N.

Przeprowadzając testy zmęczeniowe na danym poziomie amplitudy naprężenia σ_a ($D=\sigma_a$) otrzymane trwałości zmęczeniowe N wykazuję pewne rozproszenie. Część badaczy (Schijve, 1993) skłania się do poglądu, że rozkład Weibulla dobrze opisuje rozrzut trwałości zmęczeniowej w skali logarytmicznej, co wyraża się zależnością:

$$P_z = 1 - e^{-\left(\frac{\log(N)}{\mu}\right)^m}, \qquad (4)$$

gdzie μ jest współczynnikiem skali, *m* jest współczynnikiem kształtu. Kształt rozkład trwałości zmęczeniowej *N* jest wyrażony wartościami parametrów μ i *m*, które zależą od poziomu amplitudy naprężenia σ_a . Prawidłowo uzależniony współczynnik skali μ od poziomu naprężenia σ_a powinien umożliwić porównanie rozrzutów trwałości zmęczeniowej uzyskanych dla różnych poziomów σ_a . W związku z tym współczynnik skali μ przyjmuje formę $\mu = \log(N_f)$, gdzie N_f jest charakterystyczną (referencyjną) dla danego poziomu σ_a trwałością zmęczeniową. Przy założeniu, że współczynnik skali μ jest cechą materiałową, trwałość N_f można wyznaczyć ze standardowej charakterystyki zmęczeniowej typu σ_a - N_f . Dla stałego współczynnika skali $\log(N_f)$ współczynnik *m* odpowiada za kształt rozkładu, czyli

za szerokość pasma rozrzutu trwałości *N*. A zatem, współczynnik *m* jest cechą jakościową wykonania danego elementu, ale nie tylko. Przy dużych obciążeniach, czyli małej trwałości N_f rozrzuty są mniejsze niż przy obciążeniach mniejszych. Przy obciążeniu równym statycznej granicy wytrzymałości trwałość N_f w sensie zmęczeniowym nie wykazuje praktycznie żadnego rozrzutu ($N_f \rightarrow 1$ cykl obciążenia). Z drugiej strony przy obciążeniach na poziomie granicy zmęczenia jedne próbki ulegają zniszczeniu a inne maja trwałość nieograniczoną, co prowadzi do znacznych rozrzutów trwałości. Symulacje przeprowadzone dla równania (4) wykazują, że przy stałej funkcji skalującej $log(N_f)$ rozrzutu maleją dla wzrastającej wartości funkcji *m*. Prostą funkcją spełniającą takie wymagania jest funkcja w postaci:

$$m(\sigma) = m(N_f) = \frac{p}{\log(N_f)},$$
(5)

gdzie *p* jest wyodrębnioną cechą jakościową wykonania danego elementu. Ostatecznie rozkład prawdopodobień-stwa (4) zniszczenia elementu przyjmuje postać

$$P_{z}(N) = 1 - e^{-\frac{1}{\Omega_{0}} \left(\frac{\log(N)}{\log(N_{f})} \right)^{\frac{p}{\log(N_{f})}} d\omega}.$$
(6)

W przypadku równomiernego rozkładu naprężeń o powierzchni swobodnej (referencyjnej) równej A_0 , wzór (6) redukuje się do następującej formy

$$P_{z}(N) = 1 - e^{-\left(\frac{\log(N)}{\log(N_{f})}\right)^{\frac{\log(N_{f})}{\log(N_{f})}}}.$$
(7)

Rys. 1. Symulowany dwuwymiarowy rozkład prawdopodobieństwa pęknięcia elementu wykonanego ze stali 18G2A dla p=580

Na rysunku 1 przedstawiono przykładowy dwuwymiarowy rozkład prawdopodobieństwa zniszczenia otrzymany na podstawie zależności (7) przy wykorzystaniu charakterystyki zmęczeniowej σ_a - N_f stali 18G2A (Tab. 1) oraz przyjęciu wartości parametru p = 580. Natomiast rysunek 2 przedstawia punkty eksperymentalne charakterystyki σ_a - N_f wraz z otrzymanym dla p = 580 rozrzutem trwałości przy P_z ={0,05 i 0,095}. Testy eksperymentalne dla wyznaczenia charakterystyki σ_a - N_f przerywano w przypadku osiągnięcia 5·10⁶ cykli, co odpowiada $\sigma = \sigma^* = 175,4$ MPa. Takie samo założenie należy przyjąć przy wyznaczaniu rozkładu prawdopodobieństwa P_z , czyli $P_z(\sigma < \sigma^*) = 0$.

Rys. 2. Charakterystyka zmęczeniowa σ_a - N_f z punktami eksperymentalnymi wraz z rozrzutem trwałości zmęczeniowej wyznaczonym dla p=580.

Przecinając dwuwymiarowy rozkład $P_z(\sigma_a, N_f)$ płaszczyzną poziomą otrzymujemy charakterystykę zmęczeniową σ_a - N_f dla dowolnego poziomu prawdopodobieństwa (Rys. 1). W przypadku funkcji rozkładu według równania (7) krzywa referencyjna σ_a - N_f (Tab. 1) odpowiada prawdopodobieństwu $P_z = 0.63$ (dla $N = N_f$). W przypadku przyjęcia rozkładu logarytmiczno normalnego krzywa referencyjna odpowiadałaby prawdopodobieństwu Pz=0,50. Krzywa referencyjna dla stali 18G2A została wyznaczona w układzie podwójnie logarytmicznym metodą regresji liniowej na podstawie wyników badań zmęczeniowych dla $\sigma_a > \sigma_{af}$. Jeżeli trwałości eksperymentalne układałyby sie według rozkładu logarytmiczno normalnego to liczba punktów po lewej stronie krzywej referencyjnej byłaby równa liczbie punktów po jej prawej stronie Pz=0,50. Całkowita liczba punktów użytych do wyznaczania parametrów krzywej σ_a - N_f ($\sigma_a > \sigma_{af}$, rys. 2) jest równa n_t =19, a liczba punktów po lewej stronie krzywej referencyjnej $n_i=12$, co daje iloraz równy $n_i/n_i=0,632$. Wynik ten sugeruje poprawność założenia o rozkładanie trwałości typu (7), gdzie $P_f=0,63$.

Opisana metoda jest zaproponowana z myślą o jej zastosowaniu w dowolnym zakresie liczby cykli do inicjacji pęknięcia. Taka koncepcja wymaga przedyskutowania podstawowego założenia metod probabilistycznych o niezależności inicjacji pęknięć w poszczególnych podobszarach (ogniwach) elementu konstrukcyjnego. Niezależności pęknięć poszczególnych elementarnych podobszarów oznacza, że inicjacja pęknięcia w jednym (pierwszym) podobszarze definiuje zniszczenie całego elementu. W praktyce problem dotyczy de facto definicji inicjacji pęknięcia. Popularną definicją inicjacji pęknięcia jest przyjęcie pewnej krytycznej długości makroskopowego pęknięcia, któremu odpowiada trwałość o dominującym okresie bez zauważalnego pęknięcia. Postuluje się, że koncepcja najsłabszego ogniwa może być stosowana w zakresie dowolnej liczby cykli, jeżeli długość pęknięcia definiująca zniszczenie elementu będzie osiągnięta w okresie zdominowanym przez mechanizm inicjacji, w którym nie ma wyraźnej interakcji pomiędzy mikropęknięciami. Odkształcenia plastyczne spowalniają prędkość rozwoju szczeliny zmęczeniowej

i w takim przypadku zbyt długie pękniecie byłoby osiągnięte w okresie propagacji szczeliny. Propagująca szczelina nachodzi na kolejne ogniwa, niszcząc ich potencjał na zainicjowanie pęknięcia i niwelując w ten sposób hipotezę o niezależności pęknięć. Podsumowując, koncepcja najsłabszego ogniwa może być stosowana w dowolnym zakresie liczby cykli, jeśli długość pęknięcia, definiująca zniszczenie elementu, jest osiągnięta w dominującym mechanizmie inicjacji pękania, czyli dla materiałów o makroskopowych cyklicznych odkształceniach plastycznych, pęknięcia (definiujące okres inicjacji) powinny być stosunkowo krótkie.

3. ZASTOSOWANIE DWUWYMIAROWEGO ROZ-KŁADU PRAWDOPODOBIEŃSTWA P_z W OBLI-CZENIACH TRWAŁOŚCI ZMĘCZENIOWEJ

Przyjmując, że za zniszczenie elementu odpowiadają pęknięcia mające miejsce na powierzchni swobodnej elementu ($\omega = A$, $\Omega_0 = A_0$) oraz znając parametry dwuwymiarowego rozkładu prawdopodobieństwa (6), procedura wyznaczania trwałości zmęczeniowej elementu o niejednorodnym polu naprężeń jest następująca:

 powierzchnia swobodna rozważanego elementu jest dzielona na podobszary A⁽ⁱ⁾, w których panuje jednorodny rozkład naprężeń/odkształceń (Rys. 3a).

Rys. 3. (a) Wydzielone podobszary elementu o jednorodnych rozkładach naprężeń, (b) rozkłady prawdopodobieństwa trwałości $P_{tr}^{(i)}$ indywidualnych podobszarów na tle krzywej referencyjnej.

- w każdym podobszarze $A^{(i)}$ wieloosiowy stan naprężenia $\sigma_{kl}^{(i)}(t)$ jest redukowany do stanu ekwiwalentnego $\sigma_{eqa}^{(i)}$ wykorzystując odpowiednie kryterium wieloosiowego zmęczenia materiału.
- na podstawie ekwiwalentnego naprężenia i charakterystyki zmęczeniowej σ_a – N_f obliczamy lokalną (*i*) liczbę cykli $N_f^{(i)}$ do zniszczenia dla każdego podobszaru $A^{(i)}$ (Rys. 3b). Znając funkcję skalującą log($N_f^{(i)}$) wyznaczamy rozkład trwałości $P_{ar}^{(i)} = 1 - P_{r}^{(i)}$ (Rys. 3b)

$$P_{tr}^{(i)}(N) = e^{-\frac{1}{A_0} \left(\frac{\log(N)}{\log(N_f^{(i)})}\right)^{\frac{\log(N_f^{(i)})}{\log(N_f^{(i)})}} A^{(i)}}.$$
(8)

 dla każdej trwałości zmęczeniowej N sumujemy wykładniki liczby *e* funkcji (8) po wszystkich podobszarach A⁽ⁱ⁾ otrzymując funkcję:

$$P_{tr}(N) = e^{-\frac{1}{A_0}\sum_{i=1}^{t-k} \left(\frac{\log(N)}{\log(N_i^{(i)})}\right)^{\frac{p}{\log(N_i^{(i)})}} A^{(i)}} \text{ oraz } P_z(N) = 1 - P_{tr}(N).$$

– trwałości N_{cal} obliczamy dla $P_z(N_{cal}) = 0,63$. W podobny sposób można obliczyć trwałość zmęczeniową dla dowolnego poziomu prawdopodobieństwa, czyli rozrzut trwałości zmęczeniowej.

4. WYZNACZENIE PARAMETRÓW DWUWY-MIAROWEGO ROZKŁADU PRAWDOPODO-BIEŃSTWA ZNISZCZENIA ELEMENTU

Wykorzystując standardową krzywą referencyjną σ_a - N_f , liczba parametrów rozkładu dwuwymiarowego (6) została ograniczona do dwóch tj. Ω_0 i *p*. Pole powierzchni lub objętość próbki referencyjnej jest to obszar o jednorodnym rozkładzie naprężeń próbki wykorzystanej przy wyznaczaniu krzywej referencyjnej σ_a - N_f (próbki referencyjne).

Parametr *p* odpowiadający za rozkład rozrzutów trwałości zmęczeniowej może być wyznaczony na podstawie badań eksperymentalnych próbek, jeśli charakteryzują się one takim samym rozkładem defektów (rodzaj i morfologia) jak analizowany element konstrukcyjny. Zazwyczaj jednak, jakość wykonania elementów konstrukcyjnych różni się,

od jakości próbek. W takim wypadku, parametry rozkładu najlepiej dopasować na podstawie jednej serii badań eksperymentalnych konkretnego elementu przy prostych obciążeniach. Taką procedurę zastosowali między innym Delahay

i Palin–Luc (2006) przy wyznaczaniu parametrów jednowymiarowego rozkładu typu (2). W niniejszej pracy zastosowano róże wartości parametru p, które posłużyły do obliczeń trwałości zmęczeniowej i analizy zaproponowanego modelu.

5. BADANIA EKSPERYMENTALNE

Do weryfikacji proponowanej metody wyznaczania trwałości zmęczeniowej wykorzystano wyniki badań eksperymentalnych z trzech stali: 18G2A (Karolczuk i inni, 2007), AISI 1141 (Fatemi i inni, 2004), St3S (Słowik, 2007).

W badaniach stali 18G2A testom poddano próbki krzyżowe (Rys. 4) z koncentratorem naprężeń w postaci otworu o trzech średnicach $d=\{2,4; 2,5; 3,0\}$ mm.

Podstawowe własności cykliczne badanej stali 18G2A, przedstawiono w tabeli 1. Badania prowadzono przy kontrolowanych przebiegach sił: $F_x(t)=F_{xa}\sin(2\pi ft)$, $F_y(t)=F_{ya}\sin(2\pi ft-\delta)$ o takich samych częstotliwościach (f = 13 Hz) i zbliżonych amplitudach sił F_{xa} i F_{ya} z przesunięciem fazowym $\delta=180^\circ$. Za trwałość zmęczeniową uznano liczbę cykli $N_{exp}=\{39700\div246695\}$ odpowiadającą długości pierwszego zarejestrowanego pęknięcia $a_i = \{0,07 \div 0,37\}$ mm (Rys. 5). Dokładniejszy opis badań zawarto w pracy ().

Rys. 4. Geometra próbki krzyżowej; $d=\{2,4; 2,5; 3,0\}$ mm; $h=\{1,20\pm1,86\}$ mm

Rys. 5. Schemat obciążenia próbki krzyżowej z położeniem pęknięć zmęczeniowych

Tab. 1. Cykliczne własności stali 18G2A przy wahadłowym roz-
ciąganiu ściskaniu i wielkość pola referencyjnego A_0

$\sigma_a = \sigma_{af} \left(N_\sigma / N_f \right)^{1/m_\sigma}$			$\varepsilon_a^p = (\sigma_a)$	A_0		
σ_{af} ,	т _о , -	N_{σ}	<i>K'</i> ,	n', -	mm ²	
MPa		cykli	MPa			
204	8,32	$1,426 \cdot 10^{6}$	1323	0,207	1256	
Indeksy: af – granica zmęczenia, a – amplituda, p – część plastyczna						

Drugą cześć wyników eksperymentalnych zaczerpnięto z pracy (Fatemi i inni, 2004). Przebadane próbki wykonano ze stali AISI 1141 (Tab. 2) w dwóch stanach bez obróbki cieplnej (AF) i po obróbce cieplnej (QT-hartowanie i odpuszczanie). Próbki z karbem obrączkowym (Rys. 6) o dwóch promieniach zaokrąglenia dna karbu R={0,529; 1,588} mm poddano jednoosiowym obciążeniu o zerowej wartości średniej. Trwałość zmęczeniowa to liczba cykli do całkowitego zniszczenia próbki w zakresie N_{exp} ={6991÷756000}. Dominującym okresem trwałości zmęczeniowej był okres inicjacji pęknięcia.

Rys. 6. Geometria próbki z karbem obrączkowym wykonanej ze stali AISI 1141

$\varepsilon_a = \sigma_f' / E(2N_f)^b + \varepsilon_f' (2N_f)^c$					$\mathcal{E}_a^p = \left(\sigma_a / K'\right)^{1/n'}$		A_0		
	<i>E,</i> GPa	$\sigma_f',$ MPa	ε _f ', -	b, -	С, -	K', MPa	n', -	mm ²	
AF	200	1296	1,026	-0,088	-0,686	1205	0,122	162	
QT	212	765	1,664	-0,041	-0,704	1133	0,134	162	

Tab. 2. Cykliczne własności stali AISI 1141 bez obróbki cieplnej (AF) i po obróbce cieplnej (QT) oraz wielkość pola referencyjnego A_{θ}

Trzecią cześć wyników eksperymentalnych zaczerpnięto z pracy (Słowik, 2007). Próbki z karbem obrączkowym wykonane ze stali St3S (Tab. 3) poddano jednoosiowym obciążeniu $F_x(t)=F_{xa}\sin(2\pi ft)$ o zerowej wartości średniej ($f=\{0,6\div4,0 \text{ Hz}\}$). Trwałość zmęczeniowa to liczba cykli do pojawienia się makro-pęknięcia w zakresie $N_{exp}=\{2730\div322000\}$.

Rys. 7. Geometria próbki z karbem obrączkowym wykonanej ze stali St3S

Tab. 3. Cykliczne własności stali St3S przy wahadłowym rozcią-
ganiu ściskaniu i wielkość pola referencyjnego A_0

$\varepsilon_a = \sigma_f' / E(2N_f)^b + \varepsilon_f' (2N_f)^c$				$\varepsilon_a^p = (\sigma_a/K')^{1/n'}$		A_{0}	
E, GPa	$\sigma_f',$ MPa	ε_{f}' ,	b, -	С, -	K', MPa	n', -	mm^2
200	1964	0,828	-0.201	-0,620	851,5	0,168	1885

6. WYNIKI OBLICZEŃ

Ze względu na posiadane charakterystyki zmęczeniowe oraz prosty stan obciążenia próbek referencyjnych jak i próbek z karbem za kryterium wieloosiowego zmęczenia materiału przyjęto kryterium maksymalnych naprężeń normalnych (próbki krzyżowe) lub odkształceń normalnych (próbki z karbem obrączkowym) w płaszczyźnie krytycznej. Wartości ekwiwalentne według tych kryteriów oblicza się odpowiednio

 $\sigma_{eq}(t) = \sigma_n(t) = \sigma_{ij}(t)n_in_j, \quad \varepsilon_{eq}(t) = \varepsilon_n(t) = \varepsilon_{ij}(t)n_in_j, \quad (9a, 9b)$

gdzie n_i jest wektorem prostopadłym do płaszczyzny o największej wartości naprężenia $\max_{t,a} \sigma_n(t)$ lub odkształcenia normalnego Z uwagi na symetrie obcjaże

cenia normalnego $\max_{t,n} \varepsilon_n(t)$. Z uwagi na symetrie obciąże-

nia i geometrii, obliczenia przeprowadzono dla reprezentatywnej części próbki. Wartość naprężeń i odkształceń obliczono na podstawie modelu ciała z umocnieniem kinematycznym z wykorzystaniem metody elementów skończonych (elementy Lagrange'a 3D-2 rzędu) i programu COMSOL (2006). W obliczeniach użyto krzywą cyklicznego umocnienia według prawa Ramberga-Osgooda i warunek plastyczności według hipotezy Hubera-Misesa-Hencky'ego. Jako obszar ω przyjęto powierzchnie swobodną elementu A. Powierzchnie elementów skończonych potraktowano, jako podobszary $A^{(i)}$ opisane w paragrafie 3. Na podstawie otrzymanych, dla różnych wartości parametru p, rozkładów P_z obliczono liczbę cykli do inicjacji pęknięcia N_{cal}

dla trzech poziomów prawdopodobieństwa: P_z ={0,05; 0,63; 0,95} (Rys. 8.). Dla stali 18G2A satysfakcjonującą zgodność uzyskano dla p=580 (Rys. 9). Natomiast dla stali AISI 1141 najlepszą zgodność trwałości eksperymentalnej N_{exp} z obliczeniową N_{cal} uzyskano dla p=340 (Rys. 10) i to zarówno dla dwóch promieni zaokrąglenia dna karbu jak i obróbki: AF i QT. Dla stali St3S najlepszą korelację trwałości N_{exp} z N_{cal} uzyskano dla stosunkowo małej wartości obliczeniowej (Rys. 11). Na rysunkach 9-11 umiesz-czono dodatkowo pasmo rozrzutu o współczynniku 2 w obrębie, którego mieszczą się wszystkie obliczeniowe trwałości uzyskane dla P_z =0,63 przy odpowiednio dobranym współczynniku p.

Rys. 8. Porównanie trwałości eksperymentalnej N_{exp} z trwałością obliczeniową N_{cal} dla stali 18G2A przy p=400 z rozkładem prawdopodobieństwa zniszczenia $P_z(N)$ dla wybranej próbki

Rys. 9. Porównanie trwałości eksperymentalnej N_{exp} z trwałością obliczeniową N_{cal} dla stali 18G2A przy p=580

Rys. 10. Porównanie trwałości eksperymentalnej N_{exp} z trwałością obliczeniową N_{cal} dla stali AISI 1141 przy p=340

Rys. 11. Porównanie trwałości eksperymentalnej N_{exp} z trwałością obliczeniową N_{cal} dla stali St3S przy p=195

7. PODSUMOWANIE

W pracy zaproponowano procedurę wyznaczania dwuwymiarowego rozkładu prawdopodobieństwa do zniszczenia elementu P_z -N- σ/ε i jego zastosowanie do obliczania trwałości zmęczeniowej elementów konstrukcyjnych. Podejście pozwala na obliczenie trwałości zmęczeniowej dla dowolnego poziomu prawdopodobieństwa uwzględniając niejednorodny rozkład naprężeń w materiale. Przedstawiony rozkład prawdopodobieństwa według zależności (6) ma postać ogólną i może być stosowany dla różnych charakterystyk zmęczeniowych, czy to naprężeniowych, odkształceniowych lub energetycznych.

Obliczeniowe wyniki trwałości zmęczeniowej N_{cal} dobrze korelują z trwałością eksperymentalną przy p=580dla stali 18G2A, p=340 dla stali AISI 1141 i p=195 dla stali St3S. Należy zwrócić uwagę, że trwałości zmęczeniowe próbek wykonanych ze stali AISI 1141 o różnym promieniu zaokrąglenia dna karbu i po różnej obróbce cieplnej (o różnych charakterystykach zmęczeniowych) zostały dobrze wyznaczone dla takiej samej wartości parametru p. Próbki zostały wykonane taką sama obróbką mechaniczną, co potwierdza, że parametr p jest cechą jakościową elementów.

LITERATURA

- 1. **Papadopoulos I.V., Panoskaltsis V.P.** (1996), Invariant formulation of a gradient dependent multiaxial high-cycle fatigue criterion, *Engng Fract Mech* 55(4), 513-528.
- 2. **Morel F., Palin-Luc T.** (2002), A non-local theory applied to high cycle multiaxial fatigue, *Fatigue Fract Engng Mater Struct* 25, 649-665.
- 3. Weibull W. (1939), A statistical theory of the strength of materials, *Royal Swed. Inst. Engng Res.* No 151.
- 4. Weibull W. (1949), A statistical representation of fatigue failures in solids, *Transaction of The Royal Institute of Technology* No 27, Stockholm.
- 5. Bomas H., Linkewitz T. Mayra P. (1999), Application of a weakest-link concept to the fatigue limit of the bearing steel SAE 52100 in a bainitic condition, *Fatigue Fract Engng Mater Struct* 22, 733–741.
- 6. **Delahay T., Palin-Luc T.** (2006), Estimation of the fatigue strength distribution in high-cycle multiaxial fatigue taking into account the stress–strain gradient effect, *Int J Fatigue* 28, 474–484.
- Schijve J. (1993), A normal distribution or a Weibull distribution for fatigue lives, *Fatigue Fract. Engng Mater. Struct.*, Vol 16, No. 8, 851-859.
- Karolczuk A., Lachowicz C.T., Rozumek D., Słowik J. (2007), Inicjacja i rozwój pęknięć zmęczeniowych w próbkach krzyżowych z karbem, *Przegląd Mechaniczny* 2007, 12/07, 18-23.
- 9. Fatemi A., Zeng Z., Plaseied A. (2004), Fatigue behavior and life predictions of notched specimens made of QT and forged microalloyed steels, *Int. J. Fatigue* 26, 663–672.
- Slowik J. (2007), Wpływ złożonego stanu naprężenia w dnie karbu na trwałość zmęczeniową elementów maszyn, Rozprawa doktorska, Politechnika Opolska, Wydział Mechaniczny.
- 11. **COMSOL (2006)**, Structural Mechanics Module User's Guide, version 3.3 (www.comsol.com).

APPLICATION OF TWO-DIMENSIONAL PROBABILITY DISTRIBUTION IN FATIGUE LIFE CALCULATION

Abstract: The paper presents a methodology to determinate a two-dimensional probability distribution P_z of fatigue crack initiation as a function of fatigue life N and damage parameter σ/ε : P_z -N- σ/ε . The proposed probability function uses the parameters of standard fatigue curve and allows calculating the fatigue life of element with the non-uniform stress distribution.

Praca naukowa finansowana ze środków na naukę w latach 2007-2009 jako projekt badawczy.