
Krzysztof Kaliński, Marek Chodnicki, Michał Mazur 
Control Examples of a use of the optimal control at energy performance index in mechatronic approach 
 

 24 
 

 

EXAMPLES OF A USE OF THE OPTIMAL CONTROL AT ENERGY PERFORMANCE INDEX 
IN MECHATRONIC APPROACH 

Krzysztof KALIŃSKI*, Marek CHODNICKi*, Michał MAZUR*  

*Chair of Mechanics and Strength of Materials, Faculty Mechanical Engineering, Gdańsk University of Technology 

kkalinsk@o2.pl, marek@chodnicki.pl, mazur.m.r@gmail.com  

Abstract: Purpose of the paper is to present some examples of application of the optimal control at energy performance  
index in mechatronic solutions. In the paper were presented methods of vibration surveillance of mechanical systems  
idealised discretely. These methods were applied in robotics (industrial robots) as well as – for high speed ball end milling 
processes of flexible details. As example of non-linear system, a possibility of the use of optimal control at energy perfor-
mance index for wheeled robots was presented. 

1. INTRODUCTION  

Here is defined general form of energy performance  
index, which considers changing with time kinetic energy 
and potential energy of the system, i.e. (Kaliński, 2001): 
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where:  Q – matrix  of dimensionless weighing coefficients, 
R – matrix of control command effect, M – matrix of iner-
tia, K – matrix of stiffness, q – vector of generalised coor-
dinates of the real motion trajectory,  q  – vector of genera-
lised coordinates of the given trajectory, u – vector  
of control commands. 

Vector of generalised displacement q  is solution of the 
following equation:  

*
0=K q f                                                                  (2) 

where:  f0 - vector of non-potential generalised forces of 
the system, which are system’s loads for the given trajec-
tory.  
In particular case f0 ≡ f* (see Eq. 4). 

Vector of the generalised velocities q  is time derivative 
of the q vector. 

Matrix Q1 defines influence of the kinetic energy of the 
vibrations, what is particularly important in process of the 
free vibrations surveillance, while Q2 – influence of the 
potential energy, which is important for the vibrations sur-
veillance of the systems with delayed feedback (Kaliński, 
2001). 

If the task of the control unit in the system is to survey 
vibrations, then assumption has been made that the control 
signals do not influence the given trajectory movement. 
Thus we equal variation of the performance index to zero. 

After suitable transformations, relationship describing  
optimal control command has been obtained, i.e.:  
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A very important and thusfar unresolved problem is 
how to determine values of the components of matrices Q1, 
Q2, R (Engel and Kowal, 1995). Random selection of these 
values ought to be avoided, because the surveillance effect 
depends on them. It is difficult to find effective method  
for searching of the large dimension space of parameters. 
One indication leads to a use of computer simulation  
methods (Górecki et al., 1983). 

2. OPTIMAL CONTROL AT ENERGY PERFOR- 
    MANCE INDEX IN HYBRID SYSTEM 

 Here is introduced dynamic equation of controlled 
non-stationary system, described in generalised  
coordinates: 

* * * * *
i i i u+ + = + +M q L q K q f B u                                 (4) 

Signs M*, L*, K*, B*u, q*, f* and u denote respec-
tively matrices of inertia, damping, stiffness and control, 
and also vectors of generalised displacements, forces and 
control commands of the system. 

2.1. The hybrid system 

Further consideration relates to the system decomposi-
tion into following ones (Kaliński and Chodnicki, 2007). 
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1. Modal subsystem, which is described in generalised co-
ordinates qm. Matrices of inertia, damping and stiffness 
are Mmm, Lmm, Kmm, but vector of generalised forces  
is fm. Properties of that subsystem are defined by: 
Ωm=diag[ω01 ω02 … ω0mod] – matrix of undamped angu-
lar natural frequencies ω0k, k=1, ..., mod, ψm=[ ψ1 ψ2 … 

ψmod] – matrix of normal modes Ψk corresponding  
to undamped angular frequencies of the system ω0k, i=1, 
..., mod, Zm=diag[ζ1 ζ2 … ζmod] – matrix of dimen-
sionless damping coefficients corresponding to modes 
k=1, ..., mod, mod – number of modes being considered. 
Thus, following conditions are fulfilled: 

mmm aΨq = , mmmm
T
m IΨMΨ = , mmmmm

T
m ΩZΨLΨ 2= , 

     2
mmmm

T
m ΩΨKΨ = .                                              (5) 

2. Structural subsystem, described in generalised co-
ordinates qs. 

3. Connective subsystem, whose generalised co-ordinates 
are qc. 
It is assumed that rheonomic–holonomic bilateral  

constraints are between co-ordinates of modal subsystem 
qm and connective subsystem qc, that is to say: 

c c m m=W q W q  or 
c m=q Wq                                               (6) 

and; 
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Non-stationary controlled system being free-off-
constraints becomes stationary.  

If we consider constraint reactions’ equation, con-
straints’ equations and their time derivatives, we shall  
obtain description of dynamics of non-stationary controlled 
system in hybrid co-ordinates ξ, that is to say: 

ˆ ˆˆ ˆ ( , )i i i t t T+ + = −Aq Bq Cq p                                                (8) 
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q
 – hybrid co-ordinates of the whole system, 

Now we define energy performance index again, but  
in the hybrid co-ordinates:  
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where: Q1ξ, Q2ξ – matrices of dimensionless weighing 
coefficients, R – matrix of hybrid control efforts. 

Thus, the optimal control command in hybrid co-
ordinates has been determined in similar way, as described 
in Kaliński (2001). That is to say: 

 

( ) ( ) ( )

( )

( )( )

0

1

1 1 1

2 2 2

,

{
}

t
T T T

t

T T T

T T T

t dξ ξ

ξ ξ ξ ξ

ξ ξ ξ ξ ξ

τ τ τ
−

= − +

⎡ ⎤+ − +⎣ ⎦

+ −

∫

ξ

u R R B Φ

T M Q Q M ξ ξ

T K Q Q K ξ ξ

                             (10) 

Description of controlled system in hybrid co-ordinates 
significantly reduces size of the system. The latter  
is of a great importance, especially in case of large multi-
degree-of-freedom systems. 

Relationships (Eq. 8 – 10) showed, that for a perfor-
mance of optimal control in hybrid co-ordinates, here  
is required matrix Ωm of angular natural frequencies  
and matrix Ψm of corresponding normal modes of modal 
subsystem. The latter are time-invariant, due to the modal 
subsystem being stationary. In order to determine them  
we can apply:  
− Computer software for calculation of eigenfrequencies 

and corresponding normal modes of systems idealised 
discretely. In practise, we utilise high-degree-of-
freedom calculation models, created by the finite ele-
ment method.  

− Methods of experimental modal analysis. 
Both of the approaches above are recommended, with 

respect to necessity of mutual verification of the results 
obtained.  

2.2. Cutting process dynamics 

Dynamic analysis of a slender ball end milling process 
has been performed, based upon following assumptions 
(Kaliński, 2001). 
− The spindle together with the tool fixed in the holder, 

and the table with the workpiece, are separated from  
the machine tool whole structure.  

− Here is considered flexibility of the tool and flexibility 
of the workpiece.   

− Coupling elements (CEs) are applied for modelling  
the cutting process.   

− An effect of first pass of the edge along cutting layer 
causes proportional feedback, but the effect of multiple 
passes causes delayed feedback additionally. 

 
Fig. 1. A scheme of a slender ball end milling of one-side-supported 
           curved flexible billet 
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As result of a milling process modelling, we get a hybrid 
system in which are separated (Fig. 1): 
− modal subsystem. It is a stationary model of one-side-

supported flexible billet, which displaces itself with 
feed speed vf; 

− structural subsystem, that is to say non-stationary  
discrete model of ball end mill (speed of revolution n) 
and cutting process; 

− abstractive connective subsystem as conventional  
contact point S between tool and workpiece.  
For conventional contact point of tool edge and work-

piece (i.e. CE no. l), proportional model of the cutting dy-
namics is included (Kaliński, 2001; Kaliński et al., 2006). 
Thus, we can get:  

( ) ( ) ( ) ( ) ( ) ( )0
l l Pl l Ol l lt t t t t t τ= − ⋅ + ⋅ −F F D Δw D Δw        (11) 

After transformation of displacements to local co-
ordinate system of end mill as well as – flexible billet, 
equation of dynamics shall get a form (Kaliński et al., 
2006): 
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where: 
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But: q – vector of generalised displacements of the system, 
M, L, K – matrices of decoupled system, F0

l (t) – vector  
of desired forces of CE no. l,  DPl, , DOl – matrices  
of proportional and delayed feedback of CE no. l, Δwl(t–τl)    
– vector of deflections of CE no. l for time-instant t-τl. 

The matrix of transformation Tl(t) is time-dependent, 
because several edges of the cutter change their positions 
ourselves.  

2.3. Dynamics of milling flexible details as of a hybrid 
       system 

Vector of deflections of CE no. l can be described  
in structural co-ordinates qs and modal co-ordinates  
am, i.e.:  
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where: Tl(t) – matrix of transformation of displacements 
from a structural co-ordinate system to co-ordinate system 
yl1,yl2,yl3 of CE no l, Wml(t) – matrix of constraints  
between displacements in modal coordinates and displace-
ments in coordinate system yl1,yl2,yl3 of CE no l. 

Finally we shall obtain description of non-stationary 
model of dynamics of the milling process in hybrid co-
ordinates, i.e.: 
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where: il – number of „active” coupling elements. 

3. WHEEL MOBILE ROBOT 

Mobile robots can be purposed for variety of applica-
tions, like for example, inspection and surveillance.  
Performance of mobile robots during their tasks depends  
on good integrity of their components and control  
algorithms. Global positioning and task planning usually 
takes a lot of time. However it is very hard to achieve good 
performance without using an algorithm making fast cor-
rections of motor control signals during performance of 
desired trajectory. Such low level control procedures 
should run not only fast but should also be based at dy-
namic model of the robot for providing optimal control 
commands. 

 
Fig. 2. 2-wheel mobile platform 

This part of the paper is devoted to description of a use 
of the energy performance index for low level control  
of the 2-wheel mobile platform (Fig. 2). Two-wheel mobile 
platform is equipped with two independently driven 
wheels. Third wheel is used as third point of support for the 
platform and has ability of rotating freely and can achieve 
any orientation, together with the robot frame. Assumptions 
are made that robot moves over flat, horizontal surface 
without slippage and the wheels and other parts of the robot 
do not experience any deformations during the movement. 
Mathematical model of two-wheel mobile robot is strongly 
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nonlinear (Giergiel at al., 2002). Two-wheel robot is cha-
racterized by non-holomic constraints. Supervising the 
movement of the two-wheel mobile robot is not trivial task, 
because of nonlinearities and kinematic constraints between 
instantaneous velocities of characteristic points.  

3.1. Optimal control at energy performance index  

Let us assume that control unit is minimising errors in 
courses of the velocity of the characteristic point A and the 
angular velocity β  of the robot frame. In such a case,  
errors in courses of surveyed, generalised velocities could 
be a source of position errors, which are not being surveyed 
(Kaliński and Mazur, 2007).  

Let us denote mobile platform point H, which follows 
the path. Velocity components of that point  Hx  and Hy  
have to be modified in such a way that they will correct 
position errors. Projections on the global coordinate system 
of the position errors could be divided by time-interval 
during which we are going to correct this error. 

Obtained additional velocity components of the chara-
cteristic point H allow us to define additional angular  
velocities of the driving wheels, with a use of the problem 
of inverse kinematics.  

We assume such obtained additional velocities to the 
velocities obtained from the question of inverse kinematics 
for the desired trajectory. A superposition rule is not valid 
towards non-linear systems. Thus, computation should be 
performed only for adequately short period of time. With-
out making a great error, it is allowable to consider that 
motion parameters are not changing during the period of 
the  
assumed step of time. 

Investigated mobile robot moves over horizontal sur-
face; hence potential energy of the robot does not change in 
time. Here is defined energy performance index, which 
refers to changing with time kinetic energy of the system 
(Kaliński and Mazur, 2007): 

uRuqqqMQqqq TTtJ
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where:  Q – matrix of dimensionless weighing coefficients, 
R – matrix of control command effect,  q  – vector of gen-
eralised velocities of the real motion trajectory, q  –vector 
of generalised velocities of the given trajectory, which  
was obtained from the question of inverse kinematics,  
q  – vector of additional, generalised velocities, which are 
the results of difference between actual and desired posi-
tion of the mobile platform, divided by assumed time-step. 

Further we consider a system with kinematics con-
straints. For such the system it is possible to define varia-
tions of generalised velocities. We shall obtain an optimal 
control command as follows: 
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solution to homogeneous differential equation ,xAx =  . 
 

Computer simulations proved that optimal control of the 
two-wheel mobile robot with the energy performance index 
(Kaliński and Mazur, 2007) allows us to achieve very accu-
rate trajectories. Performance of the real wheeled mobile 
robot depends strongly on the unit ability to generate  
optimal control commands. Because of the non-linearity, 
control signal should be generated very frequently and thus 
measurements should also be made very often. Encoders 
allow us to make nearly instantaneous measurements with 
good resolution. Such measurements are indirect. Spinning 
the wheel caused by non-optimal control signals can be  
a source of measuring errors. It is impossible to eliminate 
the need of the use of direct methods of measurement, but 
for short distance and for supervising of the movement 
presented method should allow us to achieve very good 
results. Better performance at the short distance should 
improve overall performance of the mobile robot. 

3.2. Computer simulation  

For a research of presented method there have been de-
veloped the author computer programmes written in the C 
code. Given trajectory has three main stages. In the 1-st 

stage mobile platform accelerates from zero to given veloc-
ity Av  of the characteristic point A. Next, the platform has 
to  
follow a quarter of the circle with constant speed of chara-
cteristic point A. At last stage the platform has to follow 
straight line also with constant speed. Presented path was 
smoothed, because of using clothoid. 

 
Fig. 3. Course of orientation angle and error of the orientation angle β 

Fig. 3 shows that course of the orientation angle β of the 
mobile platform at the optimal control is very good. Errors 
are significantly small and they are approaching zero by the 
end of simulation. 
 
3.3. Real 2-wheel platform 
 

 In the (Fig. 4) is shown 2-wheel mobile robot con-
structed and assembled for the test of the presented control 
algorithm. 

Initial tests of the optimally controlled two wheel mo-
bile robot with the performance index were succeeded (Fig 
5). Measured trajectory of characteristic point H is very 
close to the desired trajectory. It was shown that robot 
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performed the trajectory very well. These measurements 
were based on counting the encoders impulses. The latter 
means that jerks and spin effects have not been detected 
during these initial tests.   Complete tests will be set up in 
the nearest future. It is also expected to make experiments 
with implementations of various control algorithms. 

 
Fig. 4. Constructed mobile robot 

Presented method for low level control of 2-wheel  
mobile platform appeared to be very effective. The latter  
is supported with following arguments.  
– During simulation achieved trajectories were very accu-

rate. 
– Presented algorithm seems to be practically stable,  

because errors were eliminated and desired trajectories 
stay close to the obtained during simulation time.  

– Results of the initial tests on real object appeared  
to be very good. 

 
Fig. 5. Measured and desired trajectory of the point H 
 
 
 
 
 

4. SUMMARY 

An optimal control at energy performance index for  
a surveillance of various mechanical discrete systems  
appeared to be effective rule for new ideas of mechatronic 
solutions. Meaning of the latter is evidenced by theoretical 
derivations, computer simulations as well as by experi-
ments on real structures. 

The novel method of vibration surveillance during ma-
chining of curved flexible details is purposed for develop-
ment with success. We use modal model of the workpiece 
whose parameters are identified during modal tests and 
analytical derivations. Employment of the FEM model 
compatible with a real billet and creation of the hybrid non-
stationary system of the milling process lead to assure  
an efficiency of vibration surveillance. 

The computation results are comparable with real  
behaviour of 2-wheel mobile platform. It means that such 
simulation is valuable tool in the process of designing of 
the motion path and control unit of real mobile platforms.  
Research showed that proposed surveillance algorithm  
is reliable and effective. According to that 2-wheel mobile 
platform is an example of non-linear system, it means that 
such algorithm could be used also for a surveillance of non-
linear systems. 
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