PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation on the microstructure of the HAP and YSZ composites

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Group of bioceramic materials includes, among others, hydroxyapatites (HAp, OHAp, HA), which, due to their specific properties are widely applied. These compounds are currently present in bone systems of human and animal bodies. One of the solutions for improvement of poor properties of HAp is addition of zirconium oxide which is characterized by high biological tolerance and enhanced mechanical properties. Application of bioceramic materials as coatings for implants introduced into human body due to their bioinertness and biocompatibility enables overcoming immunology barriers. One of the fundamental advantages of ceramic materials is their positive impact on human tissues. The investigations involved creation of composites through single-axial compaction of two ceramic powders (HAp+YSZ) and then their sintering at the temperature of 1300oC for two hours. The aim of the investigations was to determine thermal stability of hydroxyapatite (Fig. 1) and HAp + YSZ (Partially Stabilized Zirconia) (Fig. 2) and impact of addition of YSZ (8%wt. Y2O3 stabilizing ZrO2) on phase composition of the prepared composites after the process of sintering. Investigations of the structure have been performed using JEOL JSM 5400 (Fig. 4, 5) scanning microscope while phase composition have been carried out by means of Seifert 3003 T-T X-ray diffractometer (Fig. 6, 7).
Słowa kluczowe
Rocznik
Strony
28--30
Opis fizyczny
Bibliogr. 8 poz., il., rys.
Twórcy
autor
  • Institute of Materials Engineering, Częstochowa University of Technology, ul. A. Krajowej 19, 42-200 Częstochowa, POLAND, dudek@mim.pcz.czest.pl
Bibliografia
  • 1. Piconi C., Maccauro G. (1999), Zirconia as a ceramic biomaterial, Biomaterials, 20, 1-5.
  • 2. Hartmann P., Jager C. (2001), Journal of Solid State Chemistry, 160, 460-468.
  • 3. Khalil K.A., Kim S., Kim H,Y. (2007), Materials Science and Engineering, 456, 368-372.
  • 4. Chevalier J., Deville S., Munch E., Jullian R., Lair F. (2005), Biomaterials, 25, 5539-5545.
  • 5. Inuzuka M., Nakamura S., Kisi S. (2004), Solid State Ionic’s, 172, 509-513.
  • 6. Sung Y.M., Kim D.H. (2003), Journal of Crystal Growth, 254, 411-417.
  • 7. Cheng G., Pirzada D., Cai M., Mohanty P., Bandyopadhyay A. (2005), Materials Science and Engineering C, 541-547.
  • 8. Rapacz-Kmita A., Paluszkiewicz C., Ślósarczyk A., Paszkiewicz Z. (2005), Journal of Molecular Structure, 744-747, 653-656.
  • 9. Yoshida K., Hashimoto K., Toda Y., Udagawa S., Kanazawa T. (2006), Journal of the European Ceramic Society, 26, 515-518.
  • 10. Chiu C.Y., Hsu H.C., Tuan W.H. (2007), Ceramics International, 33, 715-718.
  • 11. Kalkura S.N. (2003), Materials Letters 57, 2066-2070.
  • 12. Heimann R.B. (2006), Surface and Coatings Technology, 201, 2012-2019.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0033-0010
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.