Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A tension control system which simulates the effect of tension force in the filament winding machines has been designed and implemented in the present study. Filament Winding (FW) machines are widely used in Fiber Reinforced Plastic (FRP) composite production systems in which they have a pretensioning system to optimize the tension of the fiber during winding process. The precise control of the winding path needs highly mechatronic systems. The designed control system consists of magnetic break, servo motor, a PID control unit, a load cell and a data converter. The tension of the carbon fiber was measured by a load cell and compared to the preset value to keep the tension of the carbon fiber in predefined certain range.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
5--10
Opis fizyczny
Bibliogr. 15 poz., il., wykr.
Twórcy
autor
autor
autor
- Marmara University, Faculty of Technical Education, Mechatronics Dep.,Goztepe Campus 34722, Istanbul, Turkey, nakkus@marmara.edu.tr
Bibliografia
- 1. Cohen, D. (1997), Influence of filament winding parameters on composite vessel quality and strength, Composites, Part A 28A, 1035-1047
- 2. Lauke B., Friedrich K. (1993), Evaluation of processing parameters of thermoplastic composites fabricated by filament winding, Compos Manuf. Vol. 4 (2), 93-101.
- 3. Mertiny, P., Ellyin, F. (2002), Influence of the filament winding tension on physical and mechanical properties of reinforced Composites, Applied Science and Manufacturing, Composites: Part A 33, 1615-1622.
- 4. Chan S., Munro M., Fahim, A. (1996), Accuracy-speed relationships of a robotic filament winding cell, Robotics and Computer-Integrated Manufacturing, Vol. 12, Issue 1, 3-13.
- 5. Sharon, A., Lin, S. (2001), Development of an automated ber optic winding machine for gyroscope production, Robotics and Computer Integrated Manufacturing, 17, 223-231.
- 6. Choi, S. B., Cheong, C.C., Kim, G.W. (1997), Feedback control of tension in a moving tape using an er brake actuator, Mechatronics, Vol. 7, No. I, 53-66.
- 7. Yeung, M.F., Falkner, A.H., Gergely, S. (1995), The control of tension in textile filament winding, Mechatronics, Vol. 5, Issues 2-3, 117-131.
- 8. Kudo, M., Nasu, Y., Mitobe, K., Borovac, B. (2000), Multi-arm robot control system for manipulation of flexible materials in sewing operation, Mechatronics, 10, 371-402.
- 9. Sauter, D., Jamouli, H., Keller, J. Y., Ponsart, J.C. (2005), Actuator fault compensation for a winding machine, Control Engineering Practice, 13, 1307–1314.
- 10. Polini, W., Sorrentino, L. (2005) Influence of winding speed and winding trajectory on tension in robotized filament winding of full section parts, Composites Science and Technology, 65, 1574–1581.
- 11. Polini, W., Sorrentino, L. (2006), Actual safety distance and winding tension to manufacture full section parts by robotized filament winding, Journal of Engineering Materials and Technology, Vol. 128, Issue 3, 393-400.
- 12. Carrino, L., Polini, W., Sorrentino, L. (2003), Modular structure of a new feed-deposition head for a robotized filament winding cell, Composites Science and Technology, 63, 2255-2263.
- 13. Imamura, T., Kuroiwa, T., Terashima, K., Takemoto, H. (1999), Design and tension control of filament winding system, Systems, Man, and Cybernetics, IEEE SMC '99 Conference Proceedings, IEEE International Conference, Vol.2, 660-670.
- 14. Carrino, L., Polini, W., Sorrentino, L. (2004), Method to evaluate winding trajectories in robotized filament winding”, Journal of Composite Materials, Vol. 38, No. 1, 41-56.
- 15. Akihiro, H., Shuichi, W., Masanori, K. (1999), Evaluation of strength in FW-FRP composites using ring burst test (Effects of winding tension on fracture behavior and strength)”, Transactions of the Japan Society of Mechanical Engineers, Vol. 65, No. 631, 635 -642.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0033-0005