PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Constitutive modelling and parameter identification for rubber-like materials

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the paper is to determine the phenomenological model to characterize the stress-strain relation and to simulate the behaviour of solid polyurethane (PUR) rubbcrs used in civil engineering, as well as to present the process of identification of model parameters for such materials. For the materiał studied the strain energy density function was established and a generał constitutive relationship for the second-order tensor of Piola-Kirchhoff stress for elasticity is determined. Constitutive relationships for engineering stress in terms of the princi-pal stretches are also specified. The paper presents the method of identification of parameters for constitutive models of hyperelasticity and hypoelasticity for the accessible experimcntal data. The applied identification procedurę is based on the feature of two-phase structure of polyurethane materiał and is supported by the experimental data from uniaxial quasi-static tension and compression tests. In the analysis, the materiał behaviour was considered both for the case of incompressible deformation and also for the case of slightly compressible, non-linearly elastic materials that are homogeneous and isotropic. The change of volume was ad-niitted too, in rangę of large deformations in a tension and compression test. The attempt of description of stress-softening phenomenon was undertaken in rubber-like materials, for a given level of strain, under unloading (the Mullins effect) caused by the damage of microstructure of this materiał. Different descriptions of the stress-softening phenomenon were already proposed in the literaturę but they fail to give fully satisfactory conformity of experimental data with theoretical predictions. The phenomenological model by ELIAS-ZUNIGA and BEATTY, A new phenomenological model for stress-softening in elastomers, ZAMP, 53, 794-814, 2002, for such materials was modified by different softening functions and a simplified version of this model was identified, based on the experimental data. In the proposed model, the damage of microstructure was described by a new exponential function, which depends on the current magnitude of intensity of strain and its earlier maximum value during the process of materiał loading. In this paper, a suitable analysis of existent models and their verification based on experimental data for polyurethane rubber is presented for uniaxial experiments. It is shown that the magnitude of stress-softening varies with strain and this phenomenon increases with the magnitude of the pre-strain and the type of loading: monotonie tension, compression or cyclic loading. The obtained results are presented graphically for uniaxial tension and compression.
Rocznik
Strony
117--157
Opis fizyczny
Bibliogr. 59 poz., wykr.
Twórcy
autor
  • Polish Academy of Sciences, Institute of Fundamental Technological Research Department of Mechanics of Materials Świętokrzyska 21, 00-049 Warszawa, Poland
Bibliografia
  • 1. J. LAMBERT-DIANI, C. REY, New phenomenological behaviour laws for rubbers and ther-moplastic elastomers, Eur. J. Mech. A/Solids, 18, 1027-1043, 1999.
  • 2. K. FARAHANI, H. BAHAI, Hyper-elastic constitutive equations of conjugate stresses and strain tensors for the Seth-Hill strain measures, I. J. Eng. Science, 42, 29-41, 2004.
  • 3. L. ANAND, A constitutive model for compressible elastomeric solids, Computational Me-chanics, 18, 339-355, 1996.
  • 4. MSC. Marc Volume A: Theory and User Information, Chapter 7 Material Library, Elastomer, 7-50-7-60.
  • 5. Z. Guo, L. J. SLUYS, Application of a new constitutive model for the description of rubber-like materials under monotonic loading, Int. J. of Solids and Structures, 43, 2799-2819, 2006.
  • 6. R. W. OGDEN, Large deformation isotropic elasticity - on the correlation of theory and experiment for incompressible rubberlike solids, Proc. R. Soc. Lond., A 326, 565-584, 1972.
  • 7. R. W. OGDEN, Large deformation isotropic elasticity - on the correlation of theory and experiment for compressible rubberlike solids, Proc. R. Soc. Lond., A 328, 567-583, 1972.
  • 8. R. W. OGDEN, Elastic deformations of rubberlike solids, H.G. Hopkins and M.J. Sewell [Eds.], The Rodney Hill 60th Anniversary Volume (Pergamon, Oxford, UK 328, 499-537, 1982.
  • 9. J. SIMO, R. L. TAYLOR, Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithms, Comp. Meth. in Appl. Mech. and Eng., 85, 273-310, 1991.
  • 10. E. M. ARRUDA and M. C. BOYCE, A three-dimensional constitutive model for the large stretch behaviour of rubber elastic materials, J. Mech. Phys. Solids, 41, 389-412, 1993.
  • 11. E. A. DE SOUZA NETO, D. PERIĆ and D. R. J. OWEN, A phenomenological three-dimensional rate-independent continuum damage model for highly filled polymers: formu-lation and computational aspects, J. Mech. Physics of Solids, 42, 1533-1550, 1994.
  • 12. C. O. HORGAN, R. W. OGDEN and G. SACCOMANDI, A theory of stress softening of elastomers based on finite chain extensibility, Proc. R. Soc. Lond., A 460, 1737-1754, 2004.
  • 13. D. DE TOMMASI, G. PUGLISI and G. SACCOMANDI, A micromechanics-based model for the Mullins effect, J. Rheol., 50, 495-512, 2006.
  • 14. M. M. ATTARD and G. W. HUNT, Hyperelastic constitutive modeling under finite strain, I. J. Solids and Structures, 41, 5327-5350, 2004.
  • 15. M. A. JOHNSON and M. F. BEATTY, The Mullins effect in equibiaxial extension and its influence on the inflation of a balloon, I. J. Eng. Science, 33, 223-245, 1995.
  • 16. M. F. BEATTY and S. KRISHNASWAMY, A theory of stress-softening in incompressible isotropic materials, J. Mech. Physics of Solids, 48, 1931-1965, 2000.
  • 17. A. ELIAS-ZUŃIGA and M. F. BEATTY, A new phenomenological model for stress-softening in elastomers, ZAMP, 53, 794-814, 2002.
  • 18. A. ELIAS-ZUNIGA, A phenomenological energy-based model to characterize stress-softening effect in elastomers, Polymer, 46, 3496-3506, 2005.
  • 19. R. W. OGDEN and D. G. ROXBURGH, A pseudo-elastic model for the Mullins effect in filled rubber, Proc. R. Soc. London, A 455, 2861-2678, 1999.
  • 20. A. KWIECIEŃ, B. ZAJĄC, Wyniki testów rozciągania, ściskania i ścinania materiału ICOSIT, Raport KBN (in Polish), Kraków 2006.
  • 21. A. KWIECIEŃ, J. KUBICA, P. STECZ, B. ZAJĄC, Flexible joint method (FJM) - A new approach to protection and repair of cracked masonry, First European Conference on Earthquake Engineering and Seismology (a joint event of the 13th ECEE & 30th General Assembly of the ESC), Geneva, Switzerland, 3-8 September 2006, Paper Number: 282.
  • 22. J. C. SIMO, On a fully three-dimensional finite-strain viscoelastic damage model: for-mulation and computational aspects, Comput. Methods Appl. Mech. Eng., 60, 153-173, 1987.
  • 23. S. GOVINDJEE, J. C. SIMO, A micro-mechanically based continuum damage model for carbon black-filled rubbers incorporating Mullins' effect, Journal of the Mechanics and Physics of Solids, 39 (1), 87-112, 1991.
  • 24. L. MULLINS, N. R. TOBIN, Theoretical model for the elastic behaviour of filler-reinforced vulcanized rubbers, [in:] Proceedings of the Third Rubber Technology Conference, London 1954 (Published in 1956), 397-412, 1956.
  • 25. L. MULLINS, Effect of stretching on the properties of rubber, Journal of Rubber Research, 16 (12), 275-289, 1947.
  • 26. L. MULLINS, Softening of rubber by deformation, Rubber Chemistry and Technology, 42 (1), 339-362, 1969.
  • 27. C. MIEHE, Discontinuous and continuous damage evolution in Ogden-type large-strain elastic materials, Eur. J. Mech. A/Solids, 14, 697-720, 1995.
  • 28. C. MIEHE, S. GÓKTEPE, F. LULEI, A micro-macro approach to rubber-like materials -Part I: the non-affine micro-sphere model of rubber elasticity, Journal of the Mechanics and Physics of Solids, 52, 2617-2660, 2004.
  • 29. C. MIEHE, S. GÓKTEPE, A micro-macro approach to rubber-like materials. Part II: The micro-sphere model of finite rubber viscoelasticity, Journal of the Mechanics and Physics of Solids, 52, 2231-2258, 2005.
  • 30. S. GÓKTEPE, C. MIEHE, A micro-macro approach to rubber-like materials. Part III: The micro-sphere model of anisotropic Mullins-type damage, Journal of the Mechanics and Physics of Solids, 53, 2259-2283, 2005.
  • 31. S. KRISHNASWAMY, M. F. BEATTY, The Mullins effect in compressible solids, Int. J. of Eng. Science, 38, 1397-1414, 2000.
  • 32. B. MEISSNER, L. MATEJKA, A structure-based constitutive equation for filler-reinforced rubber-like networks and for the description of the Mullins effect, Polymer, 47, 7997-8012, 2006.
  • 33. G. HEINRICH, M. KALISKE, Theoretical and numerical formulation of a molecular based constitutive tube-model of rubber elasticity, Comput. Theor. Polym. Sci., 7 (3/4), 227-241, 1997.
  • 34. R. W. OGDEN, G. SACCOMANDI, I. SGURA, Fitting hyperelastic models to experimental data, Computational Mechanics, 34 (6), 484-502, 2004.
  • 35. R. KAZAKEVICIUTE-MAKOVSKA, Experimentally determined properties of softening func-tions in pseudo-elastic models of the Mullins effect, International Journal of Solids and Structures, 44, 4145-4157, 2007.
  • 36. C. O. HORGAN, J. G. MURPHY, Plane strain bending of cylindrical sectors of admissible compressible hyperelastic materials, Journal of Elasticity, 81(2), 129-151, 2005.
  • 37. Z. P. HUANG, J. WANG, A theory of hyperelasticity of multi-phase media with sur-face/interface energy effect, Acta Mechanica, 182 (3-4), 195-210. 2006.
  • 38. C. O. HORGAN, J. G. MURPHY, Invariance of the equilibrium equations of finite elasticity for compressible materials, Journal of Elasticity, 77 (3), 187-200, 2004.
  • 39. A. DESIMONE, J. J. MARIGO and L. TERESI, A damage-mechanics approach to stress softening and its application to rubber, Eur. J. Mech. A, 20, 873-892, 2001.
  • 40. A. LION, A constitutive model for carbon-black-filled rubber: experimental investigations and mathematical representation, Continuum Mech. Thermodyn., 8, 153-169, 1996.
  • 41. E. G. SEPTANIKA, L. J. ERNST, Application of the network alteration theory for modeling the time-dependent constitutive behaviour of rubbers, Part L, Mech. Mater., 30, 253-263, 1998.
  • 42. F. ANDRIEUX and K. SAANOUNI, On a damaged hyperelastic medium: Mullins effect with irreversible strain, Int. J. Damage Mech., 8, 82-103, 1999.
  • 43. G. MARCKMANN, E. VERRON, L. GORNET, G. CHAGNON, P. CHARRIER and P. FORT, A theory of network alteration for the Mullins effect, J. Mech. Phys. Solids, 50, 2011-2028, 2002.
  • 44. C. O. HORGAN, G. SACCOMANDI, A molecular-statistical basis for the Gent constitutive model of rubber elasticity, J. Elasticity, 68, 167-176, 2002.
  • 45. H. J. Qi and M. C. BOYCE, Stress-strain behaviour of thermoplastic polyurethanes, Me-chanics of Materials, 37, 817-839, 2005.
  • 46. P. KRÓL, Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elas-tomers, copolymers and ionomers, Progress in Materials Science, 52, 915-1015, 2007.
  • 47. C. MIEHE, J. KECK, Superimposed finite elastic-viscoelastic-plastoelastic stress response with damage in filled rubbery polymers. Experiments, modelling and algorithmic imple-mentation, J. Mech. Phys. Solids, 48, 323-365, 2000.
  • 48. G. POMPĘ, A. POHLERS, P. PÖTSCHKE, J. PIONTEC, Influence of processing conditions on the multiphase structure of segmented polyurethane, Polymer, 39, 5147, 1998. (280)
  • 49. W. KURAN, M. SOBCZAK, T. LISTOS, C. DEBEK, Z. FLORJANCZYK, New route to oligo-carbonate diols suitable for the synthesis of polyurethane elastomers, Polymer, 41 (24), 8531-8541, 2000.(42)
  • 50. M. HERRERA, G. MATUSCHEK, A. KETTRUP, Thermal degradation of thermoplastic polyurethane elastomers (TPU) based on MDI, Polymer Degradation and Stability, 78 (2), 2002.
  • 51. F. BUECHE, Molecular basis for the Mullins effect, Journal of Applied Polymer Science, 4 (10), 107-114, 1960.
  • 52. L. R. G. TRELOAR, Stress-strain data for vulcanised rubber under various types of de-formation, Trans. Faraday Soc, 40, 59-70, 1944.
  • 53. H. M. JAMES and E. GUTH, Theory of the increase in rigidity of rubber during cure, J. Chem. Phys., 15, 669-683, 1947.
  • 54. L. R. G. TRELOAR and G. RIDING, A Non-Gaussian theory for rubber in biaxial strain. I. Mechanical properties, Proc. Roy. Soc. London A, 369, 261-280, 1979.
  • 55. H. M. ARRUDA and M. C. BOYCE, A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials, J. Mech. Phys. Solids, 41, 389-412, 1993.
  • 56. P. D. Wu and E. YAN DER GIESSEN, On improved network models for rubber elasticity and their applications to orientation hardening in glassy polymers, J. Mech. Phys. Solids, 41, 427-456, 1993.
  • 57. M. C. BOYCE and E. M. ARRUDA, Constitutive models of rubber elasticity: a review, Rubber Chem. Technol., 73, 505-523, 2000.
  • 58. A. N. GENT, A new constitutive relation for rubber, Rubber Chem. Technol., 69, 59-61, 1996.
  • 59. J. LEMAITRE, J. L. CHABOCHE, Mechanics of Solid Materials, Springer-Verlag, Berlin, 1987.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0032-0028
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.