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Abstract: Article describes data gathered during 23rd Chaos Communication Congress
held in Berlin in December 2006. It presents characteristics of data set describing move-
ments of participants in conference venue and errors present in it. The main part of article
is description of attempts of recovering lost data, problems with it, and how different in-
formation present in data set can help with restoring lost parts. To recover lost data spatial
dependencies and temporal model of Sputnik system were used.
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1. Introduction to Sputnik system

Analysing human interactions is in center of interest of social sciences. It is usually
done by employing questionnaires ([1]), whether filled in on paper or by using com-
puters. This requires, however, that participants remember details of their behaviours,
which is not always possible with required details.

Sputnik is Radio Frequency Identifier (RFID) system intended to trace people
in small areas and buildings. Each person is wearing tag that transmits its identifier
in regular time intervals to allow to store this persons position at those precise mo-
ments. System was used during 23rd Chaos Communication Conference (23C3) held
in December 2006 in Berlin. This article describes analysis performed on data from
23C3.

Unlike ordinary RFID systems, Sputnik uses active tags; they are equipped in
battery and transmit data whatever there is reader listening to it or not. Tag range
in buildings is up to the 10m even through dry walls. Concrete walls tend to block
the signal. Because transmission occurs at 2.4GHz, human body decreases power
of signal by about 50%; transmissions from WiFi and Bluetooth devices using this
frequency range can disturb occurring communication.

Rag has control over transmission power and can send signals varying in strength
because of having independent power source. This allows for estimating distance
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from reader. During conference 25 readers were placed in conference center in such
a way that in most cases more than one reader saw tag. This, because of possibility
of estimating distance from reader, allows for estimation of position of tag.

Sputnik system is not the only one that is intended for tracing and tracking peo-
ple. Because of reasons mentioned earlier and development in electronics similar
systems are created and used. Vassili Kostakos placed Bluetooth readers in city of
Leeds in late 2006, and recorded all identifiers of pedestrians ([6]). Nathan Eagle
equipped 100 cellular phones in special software which recorded cell towers and
nearby Bluetooth devices seen by those phones ([3]). Josua Smith et. al. ([9]) were
using ordinary passive RFID to get activities of human in house. Their setup required
putting RFID tag on each of items in home, and giving reader to each human in form
of wrist bracelet.

Setup similar to described in article was presented in [5], where museum items
was equipped in tags, and visitors could get readers which took role of tour guides.

Privacy concerns present when human movements is traced were described by
Miako Okhubo et. al. in [8].

2. Data gathered during conference

Data gathered during 23C3 was made available as both XML and binary files.
XML file contains very small portion of gathered data; it has only 357974 en-

tries, while full data set contains 11.1 million of observations. It does not contain
information about readers used to calculate positions of tags. This omission is impor-
tant, as about 1/3rd of observations has no meaningful position calculated, probably
because in those cases there was not enough data to calculate them. Also XML file
contains data from only few hours for each day of Congress.

XML file consists of “observation” tags with attributes

id ID of tag
time time of receiving radio transmission
position position of tag; (0, 0, 0) if unknown

XML file was not used in analysis because it lacked sequence numbers and
identifiers of reading stations used to calculate positions of tags.

Binary file contained all data packets received from tags; it consisted of 1144232
values. Each packet contained time of reception, IP address of reading station,
strength of signal and sequence number. Because of error in server software, identi-
fiers of tags were not saved. It made analysis of behaviour impossible, so first concern
was to recover sequences of packets produced by individual tags.
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Entire data set was stored in relational database so reading and parsing file with
data is needed only once, as those operations take long time. SQL offered by database
allows for writing analysis algorithms in much simpler way than it would be written
when parsing would be required. Basic table used to store received packets consists of
columns storing identifier of tag (initially empty column), time of reception, sequence
value, strength of received signal, station that received it and additional information
(pressed button, etc.).

Created database can be seen as temporal, and when looking at XML data con-
taining position of tags also as spatial one. Such databases store information about
presence of phenomenas in space and time. This database stores information about
presence of tags (and probably persons wearing them) at the place at the moment.
Activities performed using tags, like pressing button, are also stored in it. Additional
spatial data, like geometry of building and rooms where events were held, and tem-
poral data (schedule of Congress) can be used later for more sophisticated analysis.

Table containing data from 23C3 occupies about 700MB on hard drive. Data
types used to store sequence and time values occupy 8 bytes each; index for each of
those columns takes 250MB. Sequence identifier is stored as 4 byte integer and its
index takes about 130MB. Creation of indexes is necessary for performance reasons,
because size of database is larger than available RAM and analysis speed depends on
disk performance.

3. Analysis of data

Data was stored and worked upon by using relational database. Article [2] describes
basic algorithms and techniques used for data mining in relational databases, like
regression (including linear) and decision trees.

To understand further operations one needs to understand how tags work. In
each transmission tag sends its ID and strength of signal it uses to transmit. Each
transmission is encrypted using XXTEA. To avoid replay attacks it is necessary that
each send packet differs from previous ones — so simple ever-increasing counter was
added to the tag. Base station discards all packages with counter numbers less than
the one seen previously. To avoid problems with reset of tag (i.e. removing battery)
which sets counter value to 0, counter was split into two parts. Higher word (16 bits)
is saved during reset, and lower (also 16 bits) is not. After reset tag increases higher
word and lower is set to 0 so counter value always grows. This feature means that
gaps may occur in counter values sequences when tag battery is removed. To avoid
problems with transmitting packets from two tags at the same time each tag transmits
and sleeps for random time, from 2 to 4 seconds.
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Figure 1 shows number of packets seen in entire system in each minute. It can
be seen that during day there is high activity, and during night hours activity is very
low, because most of attendees left conference venue.

Fig. 1. Number of packets read during one minute

Table shows number of packets with particular strength of signal. Most of re-
ceived signals were the strongest ones; only about 1.5% were from the weakest pack-
ets.

Strength count
0 182874
85 568413
170 1167287
255 9225658

3.1 Rebuilding sequences

To be able to analyse data and gain some knowledge from it, sequences need to be
restored. It requires joining single packets into sequences and then attaching unique
number into each found sequence. Unfortunately original tag identifiers are lost and it
is impossible to recover them; but even without them restoring sequences will allow
for analysis of data.

Technique used for testing data mining algorithms, where part of data with
known parameters is used to check correctness of proposed program, cannot be used
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here, as no part of main data set contains identifiers. XML data set cannot be used
to test because it contains neither reader identifier nor sequence number, which does
not allow for joining those two sets.

There is not single parameter that decides whether sequence is correctly rebuild.
But knowledge coming from observations of participants during Congress and anal-
ysis of source code used in tags can help with creation of heuristics and numerical
parameters (like time periods) which should decide whether results are correct or
not. Slope of created lines must lie in correct range and observations made using data
must be correct according to physical reality. It means that one tag cannot be seen in
two places at the same time, nor it may move faster than walking (running) human —
move in very short time for few dozens of meters. Sequences also should be long,
because tags were working all the time and most of places in BCC had coverage of
readers.

3.2 Local algorithms

Local search for short sequences was used initially because global searching requires
large amounts of processing time, memory and disk resources.

According to Sputnik behaviour model, one should be able to take first packet
and then be able to find next one, that has next value of counter, and is 1 or 2 sec-
onds from previous one. This ideal situation does not take into consideration gaps
in sequences because of person leaving conference venue, or because one is not in
the range of any readers, or when tag is transmitting too weak signal to be received
by any of readers. However this is idea of finding local sequences; all functions de-
scribed in this subsection are using this approach and add code dealing with gaps and
choosing one packet that can be added to sequence when there is more than one.

The basic idea of algorithm for searching local sequences is to assume that pack-
ets are send once per 1.5s. Program needs to take all points from chosen period of
few dozens seconds. Starting from the lowest counter value it tries to find the next
value. In case of very close values of counter, difference of time is 1 or 2 seconds. In
case of longer time distances, difference should be closer to 1.5s for every packet.

When more than one packet can be chosen to extend sequence conflict occurs
and this problem must be resolved. Conflict may arise because either at the same time
there are two different counter values, or the same value occurs at different moments.
In case of either conflict we must choose only one packet to include in sequence, and
discard another one. It needs to be noticed that conflict occurs when more than one
packet can be added; it means that more than two packets may be involved in that
conflict. The general case is presence of more than one sub-sequence (consisting of
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one or more packets) that can extend existing sequence. Only one of them must be
chosen, as adding all sub-sequences will destroy existing sequence by introducing
decreases in either time or counter values. Sub-sequence may be chosen by taking
into consideration length or resemblance to already existing sequence.

To be able to recreate sequences it is necessary to create all alternatives and then
choose the best ones. All values of time and sequence counter are read in increasing
order, and all points are treated as potential extension of sequences. If considered
point can be added to sequence, it is. If not, conflict is detected. Previous value is
removed from sequence, and both points are added to special list of alternatives. In
such case each subsequent point is treated as extension not of main sequence, but
alternative sub-sequences. If it can be added to all of them, alternatives are stored,
and this point is added to main sequence. If it can be added to only some of sub-
sequences, conflict still remains. If it cannot be added to any of sub-sequences, it is
added as another alternative sub-sequence.

All found alternative sub-sequences are used to build optimal sequence. Each
step of algorithm tries to build the longest and the smoothest sequence, with the
smallest number of missing points. Slope of line is used to choose the best possible
sub-sequence to add. Line with slope closest to 1.5 is chosen by using minimal square
difference.

First program used to find sequences had time cost of O(N3), where N is number
of packets. For each point it was finding whether any of other points can be added to
the sequence by checking if equation ∆s = a∆t,1.0≤ a≤ 2.0 was met. After finding
all possible points it was generating all possible alternatives from all those chosen
points. Because for every point from given interval it was checking all other points,
time cost of this operation was O(N2). If any sequence was found, points belonging
to it were removed from data set, and entire process was started from the beginning,
giving time cost O(N3).

Improving speed of this algorithm came from observation that the longest se-
quences are made when starting from the lowest time and lowest counter values.
Query was changed to return sorted result. Algorithm was changed to take first tuple,
and try to find all other packets that can make sequence with the first one. If sequence
was found, it was removed from data set; if not, only the first tuple was removed.
Each packet was considered once as start of the sequence and all other points were
used to build sequence with it; this gives time cost O(N2).

Local algorithms were not able to find long enough sequences. Although few
found sequences were rather long (up to 20 packets for 1 minute), the most found
were only consisting of only 2 or 3 packets. Attempts of joining sequences coming
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from different time intervals (consecutive minutes) were not successful because of
large gaps between end of one sequence and beginning of the next one.

3.3 Global algorithms

Because local searching did not lead to useful sequences, global algorithms were
used. All calculations were done inside blocks of counter values of size 65536 to
avoid problems with gaps caused by counter reset.

Starting from the point with lowest values of time and sequence counter program
draws lines through all other points in range. Line that includes the most points is
chosen; all those points are put into one sequence, and removed from the original
set of points. In each case algorithm chooses line consisting of the largest number of
points; this means that it is greedy algorithm.

Histogram of all slopes with bucket of size 0.1 is used to choose the best line
coefficient. The largest count of points belonging to one class (bucket) reveals co-
efficient of line that, when drawn, will include the most points. This line should be
chosen as the next sequence. This approach can be seen as using “naive Bayes” clas-
sification, as the most populated class is used — but on the other hand not all points
are selected for this sequence. To be sure that no point is left without sequence be-
cause of rounding errors, range of slopes is used instead of simple comparison: all
points that are on lines with slopes differing less than ±0.3 from chosen slope are
included into created sequence.

Because for each point all other points are used to calculate slopes and then all
points that are in right coefficient range are chosen, time cost of this algorithm is
O(N2).

Program was running for about 72h on AMD Duron 1.3GHz with 768MB RAM
and single HDD IDE 7200RPM. It was disk-constraint, probably because of database
size larger than available RAM; processor was not much used. Update of packets to
include them in the sequence was done by one SQL query for one sequence. This
required loading large part of table, but on the other hand allowed for database to
optimise access to this table.

Many long sequences were found; only 4000 points (out of 11.1 million) were
not included in sequence. However generated lines had rather strange coefficients;
besides ordinary 1.4 or 2.5, one could find values 0.1, 0.4, 0.5, 9.9, 10.0, 8.1,
. . . Amongst sequences generated by this algorithm some were the proper ones, but
many other were wrong. Those incorrect ones had line coefficient that could not be
generated by firmware installed in tags, or they had points that came from two differ-
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ent lines, similarly to Figure 6 or Figure 7; the most noticeable example is shown in
Figure 2.

Fig. 2. Generated sequence; first set, number 7

Figure 2 shows sequence that looks like collage of many sequences. This shows
the main problem of algorithm: range of allowed coefficients is too wide so too many
points are added to sequence. The farther away from the first point, the more obvious
it is — Figure 3 shows sequence that in the beginning is correct and gets incorrect
in the end. The first part of this sequence should be preserved, and after it sequence
should end; remaining points should be used to create another sequences.

Fig. 3. Generated sequence; first set, number 19

118



Using temporal process model to recover lost data

Sequences that contain point that should belong to many different sequences
unveil the main problem with algorithm, which is caused by to wide range of possible
coefficient values and incorrect slopes of generated lines.

Two histograms of line coefficients were generated; one with buckets of size of
0.1 (Figure 4), and another with buckets of size of 0.001 (Figure 5). As can be seen,
first histogram presents false situation; number of points in many lines that consist
of small number of points but have close coefficient values is able to outnumber one
line with high number of points. This leads to situation where instead of long line the
short one is chosen.

Fig. 4. Coefficients histogram for 10 buckets

Figure 4 and Figure 5 show that experiments are needed to find proper values of
parameters, as incorrect values lead to wrong results.

Improvements of algorithm were necessary to obtain better results. Size of his-
togram class was changed to 0.001 to avoid problems with many lines joining into
one. Histogram was calculated for slopes from range 1.0 to 5.0, instead of from 0.0
to 10.0. Range of coefficients of points that were used to build lines was changed
from ±0.3 to ±0.001. This however caused gap at the beginning of each sequence,
as rounding errors in the first few minutes of sequence caused slope of those initial
points to be not close enough to the ideal to be included in chosen range.

SQL aggregate function was used to choose point which was included in se-
quence in case of presence of more than one counter value at the same time. It re-
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Fig. 5. Coefficients histogram for 1000 buckets

quired grouping by time in SQL query. Point which distance from the chosen slope
was the smallest was chosen.

Program was running on the same machine, but it was very slow. It was running
for about one week before it was stopped. It could not finish calculating sequences
belonging to the first large data set (counter ∈< 2 ∗ 65536;3 ∗ 65536 >) so it was
stopped and run for later counter values. It did not leave the next counter values
block for another week. Its usage of disk subsystem and processor time was more
balanced that for previous one. Its long working time may come from performing
more calculations, using custom aggregate function, and updating information about
sequences as many individual queries instead of one bulk query.

First few generated sequences were big, but later ones were getting smaller and
smaller, down to dozen points. Sequences had some points missing; probably some
points that should be included into those sequences were not added because of round-
ing errors and too narrow range of allowed coefficients.

Algorithm was joining sequences in spite of aggregate function which was used
to guard against it. Data analysis shown that some sequences had errors (Figure 6,
Figure 7), but they were more subtle and could not easily be seen on the graphs.

Figure 6 shows two distinct sequences that are joined. Their points are in allowed
slope range, and they are interlaced, so even aggregate function can not remove them.

Figure 7 shows three distinct sequences joined into one. They have similar slope
and their points lie in allowed range, so they are joined together, even though that
points should create distinct lines.
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Fig. 6. Interlaced sequences

Fig. 7. Collinear sequences
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Sequences that are joined but have different slopes can be detected by calculating
difference of slopes between consecutive points, similarly to differentiating. The long
sequence of differences of the same sign followed by long sequence of differences
of another sign may suggest coupling of different sequences. To avoid splitting one
sequence into many short ones number of points that have the same sign of difference
between slopes and absolute difference between those slopes can be used. If both of
those parameters are small, all points belong to one sequence.

This is similar approach to shown in [4], where authors were trying to find event
that separates two lines. Unlike in [4] here splitting event comes not from experiment,
but is interpreted by us as coupling of two lines. So “event” is just point where two
lines that are joined and need to be separated.

Basing on experiments, correct values of parameters were found. While value
0.001 as size of histogram classes was found to be correct, the same value was to
small as border of line coefficient. Experiments shown that value 0.01 was giving
much better results. Solution to problem of points belonging to other sequences that
might be included by larger border will be described later.

As mentioned earlier, because of rounding errors at the beginning of sequence
coefficients do not have the same values as coefficients for further points. It is neces-
sary to have wider allowed range of slopes in the beginning and more narrow near the
end. This can be accomplished by sigmoid function. Function 0.01+ 0.09

1+e(x−500)/100 was
used in program. At the distance 0 it generates border of 0.1; its value was getting
smaller to reach 0.01 for argument of 1000. Because of very large exponential values,
mathematical exception is generated for arguments greater than about 70000.

Using only time and counter values gives us choice of either having too wide
range and having joined sequences, or having too narrow range and leaving some
points out, without guarantee that appropriate points are included in sequence. Addi-
tional data must be used in searching for good sequences.

First choice of additional parameter is strength of signal. Each tag changes
strength of sent signal in sequence of values 0x00, 0xff, 0x55, 0xff, 0xaa, 0xff, 0xff,
0xff. First problem is that 5 out of 8 values are the same 0xff, so it is difficult to de-
termine where in sequence of signal strengths particular point is. However analysing
of source code and Sputnik data revealed that strength of signal is not distinctive
between tags. Each tag starts at the same strength sequence point, so there is no
variability between sequences. If more than one point has the same counter value,
they also have the same strength of signal. It can not be used to distinguish between
different sequences.

Because strength of signal could not be used to help to generate sequences, sta-
tions that received signal from tag were used. The main assumption was that set of
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seen readers did not change from one point to another if those points were close in
time. To keep algorithm simple only list of seen stations was considered, not their dis-
tribution in space. Similarity was defined as number of stations in both sets, divided
by size of joined sets; it is known as Jaccard coefficient and defined as c(A,B) = |A∩B|

|A∪B| .
To avoid errors shown in Figure 6 algorithm was changed to retrieve all poten-

tial points that could be added to generated sequence and choose the best one. This
approach is return to the idea of generating alternative sub-sequences used in local al-
gorithm. Points that are part of one sequence have condition (T1 > T0∧S1 > S0) met.
Program creates all possible sub-sequence from point that have not met this condition
and then chooses the best one. To choose the best it locally compares lengths, slopes
of sub-sequences and reading stations seen by all sub-sequences and chooses one that
is the most similar to main sequence (pseudo-code is shown in Figure 8).

Last version of global algorithm differs from previous ones in more than only
numerical parameters. Instead of using constant range, sigmoid function is used to
include more points in the beginning of sequence. All points are read from database,
and program builds alternative sequences from them. Instead of using custom aggre-
gate function to choose only one point, standard function aggregating all seen readers
into array is used. This array is later used to choose the best points to include into
sequence. The last change is breaking line if it is discovered that created line has high
probability of being two different lines.

The line that has the most points laying on it is chosen using histogram. Then all
points that are on lines that differ less than border range are read from database; range
is not constant, but sigmoid function is used to get it narrower in the end of block.
All those points are used to build sequence; alternative sub-sequences are generated
if needed. To find which sub-sequence should be added to main sequence, similarity
of slopes is used. Special function was created to return similarity of sets of seen
stations; it returns number from range < 0.0;1.0 >:

1. If strength of signals are the same for two points, similarity is calculated by divid-
ing number of stations seen by both points by number of all seen stations (Jaccard
coefficient)

2. If first of points has more power than second, similarity is calculated as number
of stations seen by latter by number of all readers seen by former (stronger)

Sub-sequence which is more similar to preceding point is chosen.
The very important part of function choosing sequences is condition allowing

only sub-sequences which time and counter values are greater than already existing
in sequence to be considered as alternatives. This protects from the problem of having
improper sequence in case when one alternative proceeds another.
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The final difference is new function Break which determines whether generated
sequence should end. This protects from situation seen in Figures 3, and 7. This
function (deciding whether to break one sequence into two) takes into consideration
six parameters:

1. Similarity of sets of seen stations for both lines
2. Slope of first line
3. Slope of second line
4. Whether they differ too much to avoid stair-step-case line; from experiments 10

times difference is too much
5. Whether there is much difference in time of consecutive points
6. Whether slope of any of lines differs too much from global scope of line we are

currently building

If more than 50% of those conditions is met, line is split.

for s in "SELECT DISTINCT sequence FROM sputnik WHERE id IS NULL":
for t in "SELECT DISTINCT time FROM sputnik WHERE id IS NULL AND sequence = i":

Calculate histogram of slopes of all lines starting at s, t
slope = max(histogram)
points = find all x, y that slope-delta <= (y-t)/(x-s) <= slope+delta
lines = CreateAllPossibleLines(points)
ResultLine = []

# Choose the best line:
for l0, l1 in lines:

if similarity(l0, ResultLine) > similarity(l1, ResultLine):
ResultLine.append(l0)

else:
ResultLine.append(l1)

for point in ResultLine:
if ShouldBreak(ResultLine[0]-point, point-ResultLine[-1]):

Split ResultLine into two at point

Fig. 8. Final algorithm for finding lines

Program was run on different machine than previous ones. It was running for
about 100h on 64 bit AMD 3400+ with 1GB of RAM and one SATA HDD 7200RPM.
It was stopped by FPU error in sigmoid function for large values of counter. 10.6
million points was used in generated sequences. Over 1600 sequences were made
from more than 1000 points.

124



Using temporal process model to recover lost data

Because some of generated sequences were short, the next step should be joining
them. One solution is to try to join existing sequences, another could be trying to
extend sequences by points not belonging to any sequence. But problem with joining
is choosing which sequence to join with each another. No experiments with joining
sequences were performed.

4. Final remarks

Regenerating sequences was started with assumption that each tag sends packet every
1.5s. This lead to setting coefficient range from 1.0 to 2.0. Because this was not giving
good results in local algorithms, and by observing scatter plots, global algorithms
with ragne 0.0 to 10.0 was used; and later, basing on analysing source code of Sputnik
firmware, range of coefficients was changed to 1.0 to 5.0. Source code of firmware
contains two calls of sleep function. One sleeps for 2s, and another for random period
from 0s to 2s. This gives range of line slopes from 2s to 4s. But because second sleep
function parameter is random value, there should be no straight line! However scatter
plots reveals many lines. So either Sputnik data contains so many points that one can
draw any line, or function rand() returns numbers that are not random. Basing on
analysing packets generated by single tag, second possibility is believed to be true.

No physical (or geometrical) model was taken into consideration during gener-
ating sequences. No distance between stations or speed of movement was analysed.
This could give better results in sequences, by limiting point to only those that are in
range to reach from previous point. On the other hand this approach would require
calculating position of each tag in every moment.

XML data set proves that it is possible to calculate position of tag. Tags send
packets with different signal strength to allow for estimation of distance from reader.
This estimation bases on negative knowledge. If reader is unable to read signal with
small strength it means that tag is far away from it. So having few packets it is possible
to calculate minimal and maximal distance tag is from reader. Power of signal was set
so next level of power increases radius two times. This gives two spheres with small
and large radius; person is between them. When data from few readers is known, it is
possible to calculate common fragment of space where all those spheres intersect —
this is position of tag. This approach requires knowing exact positions of readers.

Human body decreases strength of signal. This decreases precision of estimating
position of tag, but could be used to calculate direction person has, assuming that
tag is worn in the front. Range would not be sphere, but two hemispheres, larger in
the front and smaller in the back. This would require performing more calculations
(two times for each reader), but as there is no situation when all readers see one tag,
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it would not be impossible. Direction could be proven when person moves in this
direction, again with assumption that person walks forwards, not backwards.

The most interesting analysis is looking for connections and similarities between
attendees. This can be done by looking for people that attended similar talks. Those
people may not even know each other but have common interests.

Another research area is looking for friends. Friends can be defined as people
that stay together; they tend to be together not only during talks, but also and es-
pecially during breaks. If two people are close during most breaks, they are close
friends. If they are close for some times, and not close for other moments, they may
be colleagues. Or they may just stay in the same queue for pizza. However here the
most important is relative position (distance between people), not exact position of
tags.

Article by Kumar et al. ([7]) describes analysis done on data gathered from on-
line messaging system. Authors describe finding friends and fellows in online com-
munities, and process of creation of groups and cliques. In my opinion it is desirable
to use Sputnik in similar way.

The other possibility is to try to join internet and real life friends. But this as-
sumes that it is possible to gather online data; companies do not make it available, as
it is source of advertisement revenue.

Although observing movements of people in real time is interesting, it also raises
many privacy concerns. Article shows that issues raised in [8] are real; it shows that
there is even more risks to privacy than previously were thought. Authors of [8] do not
even raise question of restoring identity of tags worn by people. Presented here ap-
proach is similar to calculating identity of person from “cloud” described by Kostakos
([6]), where we can compute identity of person basing on some (changing) set of tags
(RFID of watch, computer, suitcase). While Kostakos presents is as theoretical dan-
ger, this article shows that this is real concern and must be taken into consideration.
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UŻYCIE MODELU TEMPORALNEGO W CELU
ODZYSKANIA UTRACONYCH DANYCH

Streszczenie: Artykuł przedstawia dane zgromadzone podczas konferencji Chaos Com-
munication Congress która odbyła się w grudniu 2006r. w Berlinie. Dane pochodzą z sys-
temu Sputnik który monitorował ruch uczestników konferencji. Pierwszy rozdział to któtka
prezentacja danych oraz obecnych w nich błędów. Główną część artykułu stanowi opis prób
odzyskania danych, które zostały utracone na skutek błędu w oprogramowaniu systemu
Sputnik. Opisane są sposoby odzyskiwania tych danych oraz ich rezultaty. Do odzyska-
nia został użyty temporalny model działania systemu oraz zależności przestrzenne obecne
w danych.

Słowa kluczowe: dane temporalne, dane przestrzenne, analiza danych, odzyskiwanie
danych
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