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Abstract: We present a set of numerical results which were obtained by systematic investi-
gation of efficiency of compilers implemented on Mordor cluster (http://mordor.wi.pb.edu.pl)
running Linux distribution CentOS 4, kernel ver. 2.6. As a generic problem the finite differ-
ence based framework for solution of the Poisson equation has been taken (with discretiza-
tion on grid topologically equivalent to a Cartesian grid). The PDE converted to an alge-
braic system of equations is solved by adopting so-called nonstationary, Krylov type, iter-
ative methods: conjugate gradient (CG), bi-conjugate gradient (Bi-CG), conjugate gradient
squared (CGS) and bi-conjugate gradient stabilized (Bi-CGSTAB). The code was imple-
mented using two different compilers, such as gcc (GNU Compiler Collection - ver. 3.4.6)
and icc (Intel C++ Compiler - ver. 9.1). All performances reported were done with the Xeon
3.2 GHz processor that has own memory 2 GB.
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1. Introduction

The need to solve systems of linear algebraic equations is ubiquitous through com-
putational physics. Such systems typically arise from the discretization of partial
differential equations and for practically important, real engineering problems are
very large. The demands required for the computational resources cause that often
so-called direct methods are not applicable and the iterative techniques are one rea-
sonable alternative for solution such sets of linear equations [1]. It seems that this
dynamically growing application area is the main reason why the iterative techniques
are so intensive investigated last years. Another well known motivation is impact of
parallel architectures. Direct methods are more complex to implement in parallel than
are iterative methods.
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Implementation of the iterative techniques however is still not so obvious despite
of the huge progress in the last years. In another words there is no preferred or the best
method preferable among others. From the other side it is very well known that even
the system is well conditioned (even treated by proper pre-conditioning technique)
often converges slowly or even diverges [2], [3].

The paper is devoted to illuminate an early stage of progress in developing own
made library of the iterative solvers implemented on cluster computer - Mordor clus-
ter (http://mordor.wi.pb.edu.pl). Mainly for the comparisons reasons the reported re-
sults were obtained by sequentially executed (using one procesor) algorithms. The
plan of the paper is as follows. First, we define the Poisson equation and character-
ize resulting from discretization by finite difference method sets of linear equations.
Next, we describe the group of the interested iterative techniques which belongs to
the Krylov subspace methods. In particular, we describe short characteristic of the
methods, their algorithmic realization schemes and show how they are related each
other. Taxonomy and especially historical chronology are given here basing on excel-
lent review paper by Saad and Van der Vorst [4]. Finally we present efficiency of the
investigated methods in terms of the CPU time consuming and rate of convergence.

2. The Poisson equation and its discretization

The Poisson equation is very well known in computational physics. In fact the equa-
tion play very important role in many branches of the scientific computing and nu-
merical simulation. Close to the physical interpretation it describes fluid dynamic (in
a stream function − vorticity formulation), heat conduction and many others. It is also
a kernel for generation of structured meshes in arbitrary domains (so called body fit-
ted mesh generation techniques) and more sophisticated area as in medical imaging
where is used for electro-encephalographic source analysis. The latest new branch
are requirements of the current generation of the GPU (Graphical Processor Unit) in
which range of application extends traditional graphic problems to capability of more
general computing needed for example for physical modelling.

In the paper as a generic problem we consider the two dimensional Poisson equa-
tion with Dirichlet boundary conditions on the rectangular domains Ω =

[
0,Lx;0,Ly

]
(in particular on the unit square Ω = [0,1;0,1])

∇2
φ (x) + q(x) = 0 x ∈Ω ⊂ R2 (1)

with boundary conditions
φ (x) = φD (x) x ∈ ∂Ω. (2)
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We next assume that the boundary value problem (1) and (2) is solved by means
of finite differences. This transforms differential equation to its finite difference form.
So, after discretization, we have defined difference problem

Lh ·φh = bh , (3)

where bh is the grid function that is a projection of the right hand side of the original
differential problem on the grid and φh is the grid function which is a projection of
the exact solution on the grid. The operator Lh is determined from the grid functions
and depends in general on parameters called grid steps hx, hy. In particular we assume
that Lh is linear operator acting on the regular grid 2D grid φh (it is assumed that the
grid cover the whole interested region Ω uniformly, so hx = hy→ h) and is described
by a set of stencils, with possibly varying entries each of size no longer than 3× 3
(2×3 at the boundary and 2×2 at the corners).

Finally, the main subject of interest in the paper is a vectorial matrix form of a
system of linear difference equations (3) which leads to a linear algebra problem

Aφ = b , (4)

where A and b are given and to be real, A is sparse, non-singular N×N matrix, b
an N-vector (with assumption that N is large) and φ is the vector of the unknowns.
Strictly we will try to find acceptable approximations of the Poisson equation solu-
tion by solve the equation (4). The most important is that in computational schemes
the equation needs to be solved repeatedly for different source contributions. In con-
sequence the solution of the Poisson equation is very often the most time consuming
part of the overall computational scheme. Then naturally is still needing for working
the most efficient solvers for this task.

3. Iterative solvers and methods

Each an iterative solver works by repeatedly apply a series of operations to an approx-
imate solution to the linear system, with the error in the approximate solution being
reduced by each application of the operations. The basic form of all iterative methods
is given in Fig. 1. According to the pseudo code given in Fig. 1 an iterative scheme
produces a sequence of vectors x which should converge to the vector x satisfying
the system of equations (4). So apart of choosing of the most effective F function it is
very important also to arrange a criterion which will decide when to stop creation a
sequence of x. Detailed discussion about the subject can be found in [3]. In our work
we decide to apply two stopping criteria which are defined in Section 4.3.
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set x0 to an initial estimate of x

j=0

while j < jmax and error > tolerance

perform some operations xj+1 = F
(
xj

)
j=j+1

Fig. 1. A generic iterative method.

Relating to the iterative schemes which produce successive approximation we
restrict ourselves to F functions constructed on the base of the simplest Krylov sub-
space based iterative techniques. The methods implemented and tested in this study
were Conjugate Gradient (CG), Bi-Conjugate Gradient (Bi-CG), Conjugate Gradient
Squared (CGS) and Bi-Conjugate Gradient STABilised (Bi-CGSTAB).

It is also especially needed to pointed out that the algorithms for all of solver
mentioned were consciously elaborated in the standard (unpreconditioned) represen-
tation.

3.1 The Conjugate Gradient (CG) method.

r0⇐ b−Ax0

p0⇐ r0

FOR j = 0,1, . . . , until convergence DO

αj⇐ r
T
j
rj/

(
Apj

)Tpj
xj+1⇐ xj+αjpj

rj+1⇐ rj−αjApj

βj⇐ r
T
j+1
rj+1/r

T
j
rj

pj+1⇐ rj+1+βjpj

Fig. 2. The standard (unpreconditioned) CG algorithm.

The CG method seems to be the most representative for a number of projection-type
methods on Krylov subspaces. It is especially suited for symmetric positive definite
matrices, for which it was originally devised in 1952 by Hestens and Stiefel [5].
However as its pointed out in [4] scarsely in the early 1970’s it received the more
attention in computational practice. CG is a descendant of the method of steepest
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descent that avoids repeated search in the same direction by making search directions
orthogonal to each other in the energy norm associated with the matrix.

For clarity of the pseudo codes description we use following, uniform notation
throughout the paper: xj denotes the vector x during the j-th iteration (consequently
x0 is the initial guess), rj is the residual which indicates how far the iterative sequence
of x is from the solution and is defined as rj = b−Axj.

3.2 The Bi-Conjugate Gradient (Bi-CG) method.

r0⇐ b−Ax0

Choose r∗0 so that r
T
0r
∗
0 , 0

p0⇐ r0

p∗0⇐ r
∗
0

FOR j = 0,1, . . . , until convergence DO

αj⇐ r
T
j
r∗
j
/
(
Apj

)Tp∗
j

xj+1⇐ xj+αjpj

rj+1⇐ rj−αjApj

r∗
j+1
⇐ r∗

j
−αjA

Tp∗
j

βj⇐ r
T
j+1
r∗
j+1

/rT
j
r∗
j

pj+1⇐ rj+1+βjpj

p∗
j+1
⇐ r∗

j+1
+βjp

∗
j

Fig. 3. The standard (unpreconditioned) Bi-CG algorithm.

The pioneering idea of Bi-CG was fomulated in 1952 by [6], which used biothogo-
nality relation to redure iteratively a matrix to the tri-diagonal form. Later his idea
was adopted by [7] mainly to develop the algorithms which free the CG solver from
its limitation of only being applicable to symmetric systems. For this the orthogo-
nal sequence used in the CG method has been replaced by two mutually orthogonal
sequences, one based on the system A and the other on its transpose AT. In result, im-
plicitly the Bi-CG algorithm solves additionally a dual linear system ATx∗ = b∗. Con-
sequentely the symbols with the asterix which will appear next in the paper should
be treated as a connected with the dual approximate solution.
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3.3 The Conjugate Gradient Squared (CGS) method.

r0⇐ b−Ax0

Choose r∗0 arbitrarily

p0⇐ u0⇐ r0

FOR j = 0,1, . . . , until convergence DO

αj⇐ r
T
j
r∗0/

(
Apj

)Tr∗0
qj⇐ uj−αjApj

xj+1⇐ xj+αj
(
uj+qj

)
rj+1⇐ rj−αjA

(
uj+qj

)
βj⇐ r

T
j+1
r∗0/r

T
j
r∗0

uj+1⇐ rj+1+βjqj

pj+1⇐ uj+1+βj
(
qj+βjpj

)
Fig. 4. The standard (unpreconditioned) CGS algorithm.

The CGS method was proposed in 1989 by Sonneveld [8] and represents some idea
of improvement of the Bi-CG solver. In computational realization it applies the up-
dating operations for the A sequence and AT sequence to both vectors. In concept, or
theoretically this approach would double the convergence rate, but in practice con-
vergence is not so ideal.

3.4 The Bi-Conjugate Gradient STABilized (Bi-CGSTAB) method.

The Bi-CGSTAB method was developed by Van der Vorst [9] as a hybrid of different
conjugate gradient based methods (CGS, Bi-CG and not investigated in this paper
GMRES method). In intention the method has been elaborated to solve general sys-
tems of equations (with A symmetric and non symmetric) and especially in order to
avoid the often highly irregular convergence patterns of the CGS and Bi-CG.
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r0⇐ b−Ax0

Choose r∗0 arbitrarily

p0⇐ r0

FOR j = 0,1, . . . , until convergence DO

αj⇐ r
T
j
r∗0/

(
Apj

)Tr∗0
sj⇐ rj−αjApj

ωj⇐
(
Asj

)Tsj/ (Asj)TAsj
xj+1⇐ xj+αjpj+ωjsj

rj+1⇐ sj−ωjAsj

βj⇐
(
rT
j+1
r∗0/r

T
j
r∗0

)
·
(
αj/ωj

)
pj+1⇐ rj+1+βj

(
pj−ωjApj

)
Fig. 5. The standard (unpreconditioned) Bi-CGSTAB algorithm.

4. A comparison of solvers

All results reported in this section are done with the Xeon 3.2 GHz processor on Mor-
dor cluster (http://mordor.wi.pb.edu.pl) running Linux distribution CentOS 4, kernel
ver. 2.6. The codes were generated using two different compilers: gcc (GNU Com-
piler Collection - ver. 3.4.6) and icc (Intel C++ Compiler - ver. 9.1). For each solver
we report on the elapse CPU time with a systematic investigation of the impact of

– the compiler optimization options,
– the grid size (nx,ny).

An attention is also directed on comparison of the linear solvers in terms of their
convergence rate.

4.1 The solvers test case

To compare the convergence and overall behaviour of the iterative procedure of
the tested solvers they were used to solve a two-dimensional Poisson problem with
Dirichlet boundary conditions. The problem has been chosen taking into account two
aspects, namely physical connections with the cases encountered in computational
fluid dynamic (CFD) as well as relative simplicity of the geometry and boundary
conditions which provide to case which have an analytical (exact) solution.
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Fig. 6. Analytical solution.

The test case was a finite difference discretization of the Poisson equation ap-
plied to a rectangular domain ( 0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly ) within is defined the two
dimensional equation

∂2
xxφ+∂2

yyφ+ q = 0 (5)

where φ is treated as a continuous scalar field and q is a sinusoidally varying source
term given by

q
(
x,y

)
=

( πLx

)2

+

(
2π
Ly

)2 · sin
(
π

Lx
·x

)
· sin

(
2π
Ly
·y

)
(6)

For the Dirichlet problem which is defined imposing φ = 0 on all boundaries, the test
problem (5), (6) has the exact solution

φ
(
x,y

)
= sin

(
π

Lx
·x

)
· sin

(
2π
Ly
·y

)
(7)

which is also additionaly presented in Fig. 6
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4.2 Assessment of the CPU time according to compilers optimization options

Test of influence of the compiler optimization options affecting the code speed is
presented in Tables 1 and 2. The details of the compiler features which enhance an
application performance are described in [10] for gcc compiler and in [11] for icc
compiler.

Table 1. gcc (version 3.4.6) performance.

Compiler options
Iterative solver

CG BiCG CGS BiCGSTAB

-O01 73.61 117.81 136.76 122.88

-O 44.47 71.06 82.54 76.58

-O1 44.81 71.13 82.36 76.54

-O1 -O 44.37 71.13 82.40 76.30

-O2 44.93 71.70 83.44 76.91

-O3 44.92 74.84 93.01 81.79

-Os 46.10 74.35 85.44 78.65

The elapsed CPU times given in Tables 1 and 2 are documented by solution
of the biggest problem. Timings were made using the C clock() function which
provide accuracy to 1/1000th of second. The test cases were run to fulfill stopping
criteria (see eq. (8)).

Table 2. icc (version 9.1) performance.

Compiler options
Iterative solver

CG BiCG CGS BiCGSTAB

-O1 35.95 59.41 71.01 58.95

-O21 35.66 59.79 71.24 59.70

-O3 36.18 59.62 71.41 59.64

-fast 27.31 45.77 54.99 44.47

-O2 -ipo 36.48 60.78 71.73 60.63

Summing up the results we can formulate the following general conclusions.
When using gcc practically we should not expect any increase in performance by

1 default compiler option
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proper choosing of optimizing compiler options. Only one recommendation should
be formulated to no using gcc compiler without specification of any optimizing op-
tions. In other words that means that it should be omitted using the default compiler
option [10].

Almost the same remark we can write characterizing results obtained by using
icc. We found also that the execution time is relative more sensitive to the chosen
compiler options. There is also one remarkable exception when the option −fast is
used. By analyzing the times given in the Table 2 we can expect then a significant
increase in performance of the code (the CPU time elapsed is shorter in a 20÷40%).

However the general conclusion is that the involving icc compiler generates
codes which are considerably faster than those resulted from gcc.

Fig. 7. Computation time.

Taking into account those observations for investigate the impact of the grid
size on the CPU time, we performed a series of systematic calculation using icc with
−fast option (which generate a fastest code). Results are given in Figure 7 in a
form of variation of the solution time as the number of equations is increased. For
the test problem at hand, a symmetric sparse linear system, the iterative methods we
have tested confirm superior recommendation of the CG method for their solve. In
that context is obvious that other methods took longer to solve the same problem.
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4.3 Convergence of the solvers

A stopping criteria is based on the norm of the current residual related to the norm of
the vector b, initial right hand side vector of the equation (4), and is defined as

‖r‖
‖b‖

< ε (8)

where ε is a tolerance chosen from the
〈
10−6,10−1

〉
. It is worth to mention, that the

calculation is also stopped, if the left hand side of the equation (8) does not become
smaller than ε within the chosen maximum number of iterations. At our calculations
we took that the maximum number of iterations permitted each algorithm to perform
has been set as a 1000. With no exception for each run we took x0 = 1 as an initial
guess.

To compare the convergence rates of the four iterative solvers, runs were made
using 52 and 5122 meshes, with the residual at each iteration being printed out for
plotting, the abscissa being as iteration number. Figures 8 and 9 show the con-
vergence of the solvers for the 52 mesh and the 5122 mesh respectively. As is clearly
shown the solution on the mesh 52 fails the convergence due to small h. The very nice
and representative for the Krylov space methods is Figure 9 containing convergence
rate history for 5122 mesh.

Fig. 8. Convergence plot for mesh 52.
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First of all it exhibits an irregular convergence with typical [2], a non-monotonic
reduction in residual. The CG solver shows an initial period approximately linear
convergence, after which the rate of convergence increases. The Bi-CGSTAB solver
has a more irregular rate of convergence than their CG or Bi-CG counterparts.

However in general the rate of convergence is highest among the four tested
solvers. The worst of all rate exhibits the CGS method. In an initial period the CGS
solver shows even some tendency to divergence. After this initial period, the rate of
convergence increases and finally is near close those observed for CG and Bi-CG
methods.

Finally we should pointed out that the poor in general behavior of the conver-
gence rate of the Krylov type solvers once again confirms that they should be imple-
mented with segments which guaranties a proper preconditioning.

Fig. 9. Convergence plot for mesh 5122.

5. Conclusion

The presented paper documents the first step in realization of the project leading in
intention to develop numerically efficient software addressed to solution of the Pois-
son equation using parallel computer with distributed memory. Because results were
obtained consequently in the sequential environment without any special tuning of
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the source they will be helpful in reliable investigation of performance parallelisa-
tion. In the next step we will consider in details implementation analyzed solvers on
Mordor cluster by appropriate construction of

– data structures for sparse matrices,
– data parallel algorithms for sparse matrix vector multiplies,
– reduction operators for inner product computation.
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EFEKTYWNOŚĆ NUMERYCZNA ITERACYJNYCH
TECHNIK ROZWIĄZANIA RÓWNANIA POISSONA

NA KLASTRZE KOMPUTEROWYM

Streszczenie: Przedstawiono wstępne wyniki badania efektywności sekwencyjnego przet-
warzania danych w algorytmach rozwiązywania dużych układów równań liniowych na kla-
strze obliczeniowym Mordor (http://mordor.wi.pb.edu.pl) zarządzanym przez system ope-
racyjny Linux (dystrybucja CentOS 4, wersja jądra 2.6). Szczególną uwagę zwrócono na
wpływ doboru opcji optymalizacyjnych w dostępnych kompilatorach na wydajność oblicze-
niową kodu komputerowego. Jako bazowe do rozważań przyjęto duże układy równań li-
niowych z macierzą współczynników o strukturze rzadkiej. Takie układy równań genero-
wane są w procedurze numerycznego rozwiązania równania Poissona, którego aproksymację
otrzymuje się na gruncie metody różnic skończonych (dyskretyzacja na uporządkowanej
siatce różnicowej w kartezjańskim układzie współżędnych prostokątnych). Cząstkowe rów-
nanie różniczkowe przekształcone do postaci układu równań liniowych rozwiązano z wyko-
rzystaniem czterech metod iteracyjnych typu Kryłowa: gradientów sprzężonych (CG), gra-
dientów bisprzężonych (Bi-CG), kwadratowego gradientu sprzężonego (CGS) oraz stabili-
zowaną metodą wzajemnie sprzężonych gradientów (Bi-CGSTAB). Metody te wdrożono ge-
nerując własne oprogramowanie oraz zaimplementowano z wykorzystaniem dwóch różnych
kompilatorów gcc (GNU Compiler Collection - wesja 3.4.6) oraz icc (Intel C++ Compiler
- wersja 9.1). Wyniki wszystkich testów efektywności obliczeniowej uzyskano rozwiązując
sformułowane zagadnienie testowe przy użyciu jednego procesora Xeon 3.2 Ghz wchodzą-
cego w skład jednego węzła obliczeniowego z pamięcią własną 2GB.

Słowa kluczowe: Metody iteracyjne, Metoda różnic skończonych, równanie Poissona
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