PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microelectromechanical flying robots - state of the art

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Micro Air Vehicles (MAVs) are miniature airplanes constructed from state-of-the-art materials, designed to be small, light, and highly resilient. Current applications include surveillance, reconnaissance, and munitions. Many of the planes, because of their size, have unconventional designs with respect to the wings and control surfaces. Instability introduced by the small non-traditional aircraft designs must be addressed, to eliminate the need for an expert pilot for aircraft control and navigation. In this paper we present a state-of-the-art technology development focused on the technologies and components required to enable flight at small scales, including flight control, power and propulsion, navigation, multi-purpose structures, advanced communications and information systems, Micro-electro-mechanical Systems (MEMS), advanced sensors, and lightweight, efficient high-density power sources.
Rocznik
Strony
75--88
Opis fizyczny
Bibliogr. 48 poz., il., rys.
Twórcy
autor
  • Politechnika Białostocka, Wydział Mechaniczny, Katedra Robotyki i Automatyki, ul. Wiejska 45 C, 15-351 Białystok, sibilski@hot.pl
Bibliografia
  • 1. A, Masato O., Kunio Y., (2001), Aerodynamic characteristics of wings at low Reynolds Numbers. Fixed and flapping wings aerodynamics for micro air vehicle applications, Ed T, J, Mueller, Progress in Astronautics and Aeoronautics, AIAA, Reston, Va., 341-398
  • 2. Azuma A., (1998), The biokinetics of flying and swimming, Springer Verlag, Tokyo
  • 3. Bolsman C. T., Bjorn P., Goosen H. F. L., Schmidt R. H. M, Keulen F. van, The Use of Resonant Structures for Miniaturizing FMAVs, 3rd US-European Competition and Workshop on Micro Air Vehicle Systems (MAV07).
  • 4. Bergou A., J., Sheng Xu, Wang Z. J., (2007), Passive wing pitch reversal in insect flight, J. Fluid Mech., vol. 591, 321–337
  • 5. Bozkurt A., Gilmour R., Stern D., Lal A., (2008), MEMS based bioelectronic neuromuscular interfaces for insect cyborg flight control, MEMS 2008, Tucson, AZ, USA, January 13-17, 160-163
  • 6. Doncieux S., Mouret J-B., Muratet L., Meyer J-A., (2006), The ROBUR project: towards an autonomous flapping-wing animat, Proceedings of the 5th European MAV conference and Competition, Braunschweig, July, 2006
  • 7. Dickinson M. H., (1999), Bionics: Biological insight into mechanical design, Proceedings of the National Academy of Sciences, December 7, 1999, vol. 96, no. 25, 14208–14209
  • 8. Dickinson M, H., Lehmann F. O., Sane S. P., Wing rotation and the aerodynamic basis of insect flight, Science, Vol. 284, 1954-1960
  • 9. Ellington C. P., (1984) The aerodynamics of hovering insects flight. III Kinematics. Philosophical Transactions of the Royal Society of London. Series B. Biological Sciences, 305 (1122), 41-78
  • 10. Ellington C. P., (1999), The novel aerodynamics of insect flight: applications to micro-air-vehicles, The Journal of Experimental Biology, 202, 3439–3448
  • 11. Grasmeyer J. M., Keennon M. T., (2001), Development of the Black Widow Micro Air Vehicle, AIAA-2001-0127 CP
  • 12. Hewish M., (1999), A bird in the hand, Janes International Defense Review, no. 11
  • 13. Hicks R., Rais-Rohani M., (1999), Multidisciplinary design and prototype development of a micro air vehicle, J. of Aircraft, vol. 36, no. 1, 227-234
  • 14. Joon-Hyuk Park, Kwang-Joon Yoon, Hoon-Cheol Park, (2007), Development of bio-mimetic composite wing structures and experimental study on flapping characteristics, Proceedings of the 2007 IEEE International Conference on Robotics and Biomimetics, December 15 -18, 2007, Sanya, China, 25-30
  • 15. Karpelson M., Gu-Yeon Wei, Wood R. J., (2008), A review of actuation and power electronics options for flapping-wing robotic insects, 2008 IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, May 19-23, 2008, 779 - 786
  • 16. Kroo I., Kunz P., (2000), Development of the mesicopter: A Miniature Autonomous Rotorcraft, Proceedings of the American Helicopter Society Vertical Lift Aircraft Design Conference, San Francisco, CA
  • 17. Madejski J., (1991), Napędy owadzie i ptasie, Dodatek do książki: Traktat o śmigłach, Wyd. PAN, Warszawa
  • 18. Malladi B., Krashanitsa R., Silin D., Shkarayev S., (2007), Dynamic model and system identification procedure for autonomous ornithopter, Proceedings of the 3rd US-European MAV conference and Competition, Toulouse, September 2007
  • 19. Margerie E. de, Mouret J.-B., Doncieux S., Meyer J.-A., Ravasi T., Martinelli P., Grand C., (2007), Flapping-wing flight in bird-sized UAVs for the Robur project: from an evolutionary optimization to aeal flapping-wing mechanism, Proceedings of the 3rd US-European MAV conference and Competition, Toulouse, September 2007
  • 20. Marusak A., Pietrucha J., Sibilski K., Złocka M., (2001), Mathematical modelling of flying animals as aerial robots, 7th IEEE Inter. Conf. on Methods and Models in Automation and Robotics (MMAR 2001), Międzyzdroje, Poland, Aug. 28-31
  • 21. Maxworthy T., (1979), Experiments on the Weis-Fogh mechanism of lift generation by insects in hovering flight. Part I. Dynamics of the “fling”, J. Fluid Mech., Vol. 93, part 1, 47-63
  • 22. McMichael J. M., Francis M. S., (1997), Micro Air Vehicles - Toward a new dimension in flight, Proceedings of the 23th Annual AUVSI Conference
  • 23. Michelson R. C., Helmick D., Reece S., Amarena C., A reciprocating chemical muscle (RCM) for Micro Air Vehicle „Entomopter” flight, http://avdil.gtri.gatech.edu/ RCM/RCM/Entomopter/AUVSI-7/_EntomopterPaper.htm
  • 24. Michelson R.C., Micro Air Vehicle „Entomopter” Project, http://avdil.grti.gatech.edu/RCM/RCM/Entomopter/Entomopt erProject.html
  • 25. Narkiewicz J., Pietrucha J., Sibilski K., (2000), Can modern rotorcraft aeromechanics help to design entomopter propulsion ?, Prace Instytutu Lotnictwa, no 163
  • 26. Pietrucha J, Sibilski K., (2003), Od stworzeń latających do miniaturowych statków powietrznych, NIT - Nauka, Innowacje, Technika, nr 1
  • 27. Pietrucha J., Poniżnik Z., (2004), Kto jest mistrzem latania? Wykorzystanie energii w naturze, NIT - Nauka, Innowacje, Technika, nr 3
  • 28. Pietrucha J., Sibilski K., Złocka M., (2000), Modelling of aerodynamic forces on flapping wings – questions and results, Proc. of 4th Inter. Seminary on RRDPAE-2000, Warsaw
  • 29. Platzer M. F. et al., (1993), Aerodynamic analysis of flapping wing propulsion, AIAA 93-0484CP
  • 30. Pornsin-Sisirak T., et. all., (2000), MEMS wing technology for a battery-powered ornithopter, 13th IEEE Inter. Conf. On Micro Electro Mechanical Systems (MEMS ‘00), Miyazaki, Japan, Jan. 23-27
  • 31. Priyadarshi A.K., Gupta S.K., Gouker R., Krebs F., Shroeder M., and Warth S., (2007), Manufacturing multimaterial articulated plastic products using in-mold assembly. International Journal of Advanced Manufacturing Technology, VOL. 32, no 3-4, 250 – 365
  • 32. Sane S. P., (2003), The aerodynamics of insect flight, The Journal of Experimental Biology no. 206, 4191-4208
  • 33. Schenato L., Deng X., Wu W.C., Sastry S., (2001), Virtual insect flight simulator (VIFS): A software testbed of insect flight, IEEE International Conference on Robotics and Automation
  • 34. Shyy W, Berg M., Ljungqvist D., (1999), Flapping and flexible wings for biological and micro air vehicles, Progress in Aerospace Sciences, , Vol. 35, 455-505
  • 35. Sibilski K., (2004), Dynamics of flapping wings micro-airvehicle, Acta Polytechnica, vol. 44, no. 2
  • 36. Singh B., Ramasamy M., Chopra I., Leishman J. G., (2004), Insect-based flapping wings for micro hovering air vehicles: experimental investigations, Proceedings of the American Helicopter Society International Specialists Meeting on Unmanned Rotorcraft, Arizona, January, 2004
  • 37. Smith M. J. C., Wilkin P. J., Williams M. H., (1996), The advantages of an unsteady panel method in modeling the aerodynamic forces on rigid flapping wings, Journal of Experimental Biology, Vol. 199, 1073-1083
  • 38. Sunanda S., Kawachi K., Watanabe I., and Azuma A., (1993), Performance of a butterfly in take-off flight, J. of Experimental Biology, 1993, Vol. 183, 249-277
  • 39. Tobalske B. W., Dial K. P., Flight kinematics of black-billed magpies and pigeons over a wide range of speeds, Journal of Experimental Biology, 1996, Vol. 199, 263-280
  • 40. Weis-Fogh T., (1973), Quick estimates of flight fitness in hovering animals including novel mechanism for lift production, J. of Experimental Biology, Vol. 59, 169-230
  • 41. Willmott A. P., Ellington C. P., (1997), The mechanics of flight in the hawkmoth manduca sexta. Part I. Kinematics of hovering and forward flight; Journal of Experimental Biology, 200, 2705–2722
  • 42. Wood R., (2008). Fly, Robot Fly, IEEE Spectrum, March 2008, 25 – 29
  • 43. Wood, R. J., (2008), The First takeoff of a biologically inspired at-scale robotic insect, IEEE Transactions on Robotics, Vol. 24, No. 2, 341-347
  • 44. Vörsmann P., (2003), MAV State-of-the-Art & Technology Drivers, Proceedings of the MAV-Workshop, Elmau, Sept. 22- 24, 2003
  • 45. Xinyan Deng, Schenato L, S. Shankar Sastry S. S., (2006), Flapping flight for biomimetic robotic insects: Part II -flight control design, IEEE Transactions on Robotics, Vol.. 22, No. 4, 789-803
  • 46. Zaeem A. K., Agrawal. S. K., (2005), Force and moment characterization of flapping wings for micro air vehicle application, American Control Conference , June 8-10, Portland, OR, USA, WeC11.4
  • 47. Żbikowski R., (2003), Flapping wing MAVs. By-invitationonly workshop on Micro Aerial Vehicles – Unmet Technological Requirements, DLR Institut für Aeroelastik,Göttingen/Germany, Elmau Castle/Germany, September 22 – 24
  • 48. Żbikowski R., Galiński C., (2005), Insect-like flapping wing mechanism based on a double spherical Scotch yoke, J. Royal Soc Interface, Vol. 2, no. 3, 223–235
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BPB2-0031-0032
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.