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Abstract: The emergence of sophisticated formal control synthesis tools provokes important questions for any prospective 
user: why learn to use these new tools, what will they offer me? In synthesis of magnetic bearing controllers, it turns  
out that the range of stabilizing controllers is often quite narrow so that the difference between a poor controller  
and an “optimal” one may be small. Hence, the product of formal control synthesis tools often looks and performs much 
like what a reasonably clever control engineer would produce by hand. This paper demonstrates that the real value of these 
tools lies in a) generation of a performance benchmark which can be used to firmly establish the best performance relative  
to a specification and b) change of design parameter space to one which is relatively easy to maintain and represents  
a durable investment from an engineering process view.  
Keywords: Robust control, flexible rotor, mu-synthesis, uncertainties. 
 

 
 

 
 

 

1. INTRODUCTION 

 Magnetic bearing systems for rotating machinery 
represent an archetypal challenge for multi-input, multi-
output (MIMO) control: they inherently involve multiple 
interacting control mechanisms and many conflicting 
performance objectives. As such, they would appear  
to be a perfect application of formal MIMO control design 
techniques such as µ-synthesis. However, the control 
culture of the magnetic bearings technical community  
is largely classical and many clever approaches have been 
developed to enable classical, essentially single-input, 
single output (SISO) methods to produce reliable and 
robust solutions to this control problem. A large part of the 
reason behind this is, quite simply, that classical SISO 
methods are more widely understood by controls engineers 
and have a much larger experience base on which to draw. 
Consequently, most commercial developers view tools like 
µ-synthesis with considerable trepidation. 

Compounding this view is the simple fact that  
most published examples of µ-synthesis control  
for AMB systems produce only incremental improvements 
over hand-synthesized controllers and even this comparison 
is suspect since optimization of hand-synthesized 
controllers is largely an art for systems with this level  
of complexity. We argue here that the primary reason for 
applying a method like µ-synthesis to AMB control 
problems is to obtain a better engineering process rather 
than to obtain substantial performance enhancements. 
Because µ-synthesis is genuinely an optimization process 
and because the performance index that it optimizes  

has a very clear connection to real engineering practice,  
µ- can at least provide a benchmark against which other 
controllers may be measured. This alone justifies some 
level of investment in the method. But more importantly,  
µ- represents a change in parameter space - the set of knobs 
that a control designer can turn - and this new parameter 
space arguably leads to a better engineering process.  
In particular, investments in this alternate process are easier 
to translate to different control problems, easier  
to document, and easier to transfer to new engineers.  
In order to develop this argument, this paper first outline 
what is viewed to be the natural primary objectives  
or specifications of AMB controller synthesis. Then the 
connection between these objectives and the µ-synthesis 
problem will be developed, highlighting what is retained 
exactly, what is retained approximately, and what is lost. 
Then, the actual µ-synthesis problem will be discussed, 
emphasizing that it is essentially a minor last step once  
a well structured analysis process for the control objectives 
has been assembled. That is, most of the engineering effort 
is applied to developing machinery for assessing  
the performance of any controller relative to these 
objectives: if this machinery is constructed in a particular 
way, then µ-synthesis is automatic and requires  
no significant further effort by the engineer. To illustrate 
the concepts, an AMB supported machine tool spindle 
example will be presented. Inevitably, the discussion is 
heavily invested in the machinery of µ-analysis and 
synthesis as well as that of H∞ analysis and synthesis. 
However, most of the central details can only be provided 
in sketch because of space limitations: the interested reader 
is referred to any of numerous authoritative texts on these 



Jerzy T. Sawicki 
Rationale for mu-synthesis control of flexible rotor-magnetic bearing systems 

 68 

subjects, for instance (Zhou et al., 1996; Goodwin, 2001; 
Green and Limebeer, 1995). 

2. AMB MACHINING SPINDLE REFERENCE 
    EXAMPLE 

To illustrate the concepts presented here, consider the 
AMB supported machine tool spindle with cross-section 
shown in Fig. 1. The spindle rotor is supported by two 

radial bearings and one thrust bearing. The maximum static 
radial load capacities are approximately 1400 and 600 N  
for the front and rear bearings, respectively, and the 
maximum axial capacity for thrust bearing is 500 N.  
The spindle reaches a rotational speed of 50,000 rpm at 10 
kW. The AC motor acts on the rotor between the thrust and 
rear radial bearing.  

 

 
 
 

 
 

Fig. 1. High-speed machining spindle supported on active magnetic bearings 
 

 
The total rotor mass is 6.85 kg while the total length  

is 464 mm.  The first two free-free flexible modes  
are at frequencies 1070 Hz and 1985 Hz. The actuators  
are driven by transconductance power amplifiers  
with bandwidth of about 2400 Hz and a gain of 1 volt/amp. 
Control is implemented digitally with a sampling rate of 10 
kSa/sec. The full system model includes rotor (64-element 
FEM model modally truncated to include two rigid body 
modes and two flexible modes), actuator properties, 
amplifier dynamics, computational delay (by Padé 
approximation), and sensor dynamics.  

3. AMB CONTROLLER DESIGN: OBJECTIVES 

Most applications of AMB systems for rotating 
machinery are primarily concerned with steady behavior: 
analysis focuses on response to steady sinusoial loads such 
as mass unbalance, shaft bow, aerodynamic loads, and 
sensor noise. Such an approach is even commonly adopted 
when considering transient phenomena such as compressor 
surge. Notable exceptions to this include applications  
to systems subject to extreme impact loading such as 
underwater naval vessels. For systems which are linear 
(really the dominant behavior of AMB systems), this focus 
on sinusoial response has a deeper theoretical justification 

which dictates that the “worst case”1 bounded signals that 
can act on linear (time invariant) systems are sinusoial.  

The literature contains many detailed application 
examples where the performance objectives in AMB 
controller synthesis are elucidated (Sawicki et al., 2007; 
Fittro and Knospe, 1999; Sawicki and Maslen, 2006, 2007; 
Namarikawa and Fujita, 1999). Generally, the obvious 
objectives include an adequate stability margin  
and adequate management of external loads. Given  
the underlying nonlinear character of AMB systems,  
a common secondary objective is to maintain operation  
in an essentially linear regime, avoiding numerous sources 
of nonlinearity including actuator magnetic saturation, 
amplifier voltage saturation, and actuator nonlinearity due 
to large journal displacements. 

At the most conceptual level, the AMB system may  
be described by the block diagram indicated in Fig. 2  
in which the control inputs u are signals delivered to the 
power amplifiers, the measurements y are signals received 
from position sensors, the loads w are forces or electrical 
noise acting on the system, and performance measures z are 
those signals that the engineer will monitor in assessing 
adequate management of the loads w. 
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Fig. 2. An AMB system represented as a four block problem 

 
In describing these signals, each will have a natural 

engineering description and these diverse descriptions will 
need to be adapted to a uniform and mathematically 
tractable form for purposes of assessment and design.  
It is assumed that the signals y and u are self-explanatory 
and will typically have units of volts. More important  
is the character of the signals w and z. The exogenous 
signals w will be a combination of forces (rotor unbalance, 
gravity load, process loads, impacts) and sources  
of measurement signal corruption: generally, electrical 
noise. Some of these have a nice description  
as a combination of simple basis functions (sinωt, cosωt, 
1.0, eat) with unknown but bounded amplitudes. A simple 
example is mass unbalance which will typically act at many 
locations along a rotor and will be described at each 
location as  

( )
( )
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f t
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in which meu.i is a known level of mass unbalance at each 
location, but with a relatively confident bound:  
meu.i< meu.i, max. 

Signals such as electrical noise are a bit more difficult  
to describe but may be represented in terms of spectral 
bounds. In this case, the spectrum of the signal is expected 
to lie below a specific bounding curve: assume that there  
is a stable transfer function Ww(s) whose magnitude 
exceeds the expected amplitude of the noise signal at every 
frequency. This means that there is a choice of signal ŵ 
whose RMS amplitude is less than 1.0 for which w=Wwŵ  
recovers the expected noise signal. Ideally, the amplitude  
of Ww is as small as possible at every frequency, while still 
preserving this relationship. Often, when the spectrum  
of the signal η might be complicated, Ww significantly 
overbounds the range in the interest of keeping  
the complexity of Ww low.  

The end result is a description of the exogenous signals 
which takes the form  

( ) ( )ˆww s W w s=                                                             (2) 

in which the elements of ŵ(t) are expected to be periodic 
with amplitude less than or equal to 1.0. The weighting 
function Ww accounts for spectral bounds which vary with 
frequency as in the case of mass unbalance (increases with 
the square of frequency out to some maximum rotation 
rate).  
 

In the case of the performance signals, the requirement 
for adequate performance will ideally take the form of 

( ),min ,max   :    i i iz z t z t≤ ≤ −∞ < < ∞                          (3)                

Examples of such performance specifications include rotor 
contact clearance, actuator magnetic flux density,  
and power amplifier output voltage and current. Most 
commonly, the limits are symmetric so that we may require 

( )
,max

1  :   i

i

z t
t

z
≤ −∞ < < ∞                                               (4)               

More generally, this nondimensionalization may be written 
as 

( )ˆ ˆ :    1.0z iz W z z t= ≤                                                   (5)                 

in which the scaling of the elements of z is encapsulated  
by the weighting function Wz. In this manner,  
Wz is a performance specification in that it stipulates 
limitations on permissible range of the performance 
variables zi. 

4. THE SYSTEM MODEL 

In its most precise description, the dynamic mapping G 
indicated in Fig. 2 is nonlinear but it is standard practice  
to use a linear approximation throughout most of the design 
process. In the sequel, we will assume specifically that  
G is linear time invariant (LTI) and may be represented  
as a matrix of transfer functions. For most AMB systems, 
such a representation retains sufficient fidelity to permit  
it to carry the design and analysis nearly to completion.  
A very thorough design process would conclude  
by connecting the resulting controller to a fully nonlinear 
model of the AMB-rotor system and use transient 
simulations to establish that the linear assumptions have not 
missed critical performance or stability features. This 
assumption that G is LTI is central to μ−synthesis  
and is a first limitation of the design process. Of course, 
similar assumptions underlie most practical controller 
synthesis processes: the most notable exceptions would  
be Lyapunov methods (Tsiotras et al., 2000) or variants 
such as backstepping (de Queiroz and Dawson, 1996)  
but these methods have received only very limited attention 
in the AMB literature and are generally not practical  
to apply to high ordered models G as arise when rotor 
flexibility is considered.  

In a similar manner, it is common to model  
the controller as also LTI for the bulk of the design and 
analysis work. Certainly, commercial AMB controllers 
often contain nonlinear elements (Lindlau and Knospe, 
2002; Cole et al., 2000), but these are assumed either  
to play a role in extending the linear operating regime 
(output feedback linearization, for instance) or to operate 
only when the system is under duress. As such, the 
controller may be described by a matrix transfer function H 
and the closed loop system indicated in Fig. 3 maps 
nondimensional exogenous signals ŵ  to nondimensional 
performance measures ẑ  via 
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Fig. 3. An AMB system with controller closed loop 

 
Here, the weighted closed loop performance function P can 
be introduced as a shorthand notation for the more complex 
expression 

( ) 11

z zw zu yu yw wP W G G H I G H G W
−−= + −⎡ ⎤⎣ ⎦                     (7)                                   

5. PERIODIC FUNCTIONS 

The performance problem, then, is to establish that 

( )ˆ 1.0  :    iz t t≤ −∞ < < ∞  

when  ( ) ( )ˆẑ s Pw s=  and wi(t) is any periodic signal with 
amplitude less than or equal to 1.0. First, note that if P  
is stable, then the homogenous responses ˆ

iz  will also  
be periodic. If they are periodic, then there is a fundamental 
connection between the amplitudes of ˆ

iz  and their peak 
temporal values. Hence, assume that the same 
normalization holds: that ˆ 1iz ≤  is a sufficient condition to 
meet the temporal requirement. Primarily, this assumption 
means that we neglect the transient response and assume  
that the engineering analysis is predominantly concerned 
with steady state (periodic) response. Obviously, very close 
satisfaction of periodic response bounds may imply that  
the transient response violates the temporal bound:  
one approach to managing this shortcoming is to be a bit 
conservative in establishing the periodic constraint. 

With this, the performance requirement becomes 

( ) ( ) ( ) ( )ˆ ˆˆ ˆ1.0,    ,     1.0i iz t z s Pw s w t< = <            (8)                                        

in which both ẑ and ŵ are assumed to be periodic functions 
whose amplitudes may be represented in RMS terms.  
Of course, this condition should be met for the worst case 
choice of ŵ. In particular, the elements of ŵ should be 
worst case periodic functions and the combination of 
bounded amplitudes should maximize ẑ . Fortunately, it 
may be proved that, for an LTI operator P, the worst case 

periodic function is a sinusoid of single frequency. Thus, a 
sufficient condition for satisfying (8) is that 

( ) ( ) ( ) ˆˆ ˆ1.0,    sin ,    

ˆ 1.0,     
i

i

z t z t P j w t

w

ω ω

ω

< =

< ∈ℜ
                       (9)            

Relative phase of the exogenous signals in (9) is managed 
by assuming that the ŵi are complex numbers.  Under this 
assumption, the functions ˆ

iz  may also be represented  

as ( )ˆ ˆ sini iz t z tω=  and (9) becomes 

( ) ( ) ˆ ˆˆ ˆ1.0,    ,     1.0,     i iz t z P j w wω ω< = < ∈ℜ       (10)                   

6. SINGULAR VALUE ANALYSIS 

Equation (10) still represents a worst case condition  
in that we must assure that none of the elements ˆ

iz  has 
modulus exceeding 1.0 for any frequency or for any 
possible combination of ŵi which are only constrained  
to have modulus less than 1.0. For the moment, neglect the 
frequency dependence and focus on the possible 
combinations of ŵi.  

The notion that we need ˆ 1iz <  for any combination  

of ˆ 1iw <  has a nice engineering interpretation but here we 
introduce another simplification in order to make  
the problem more mathematically tractable. Rather than 
requiring that each element of ŵ have modulus less than 1, 
require that the sum of the squares is less than one: 

2 2

2
ˆ ˆ 1i iw w= <∑ . Certainly, this condition may only  

be met if | ŵi |<1 so it is a sufficient but not necessary 
constraint on w. Further, rather than requiring that ˆ 1iz < , 

require that 
2 2

2
ˆ ˆ 1i iz z= <∑ . Again, this is conservative 

in that it is a sufficient condition for the stipulation on ˆz 
but not necessary. Thus, if it is true that 

2 2 2
ˆ ˆˆ 1,   for  1z Pw w= < ∀ <                           (11)                  

then it is also true that ˆ 1iz < . 
The value of the condition indicated by (11) is that  

it may be tested without performing an exhaustive search  
on feasible ŵ. In particular, a necessary and sufficient 
condition for meeting (11) is that the maximum singular 
value of P is less than 1.0: 

( )
2 2 2

ˆ ˆˆ1  1  1P z Pw wσ ≤ ⇔ = < ∀ <  

Of course, as in (10), P is a function of frequency so that  
a sufficient condition to meet (10) is that 

( ) 1  Pσ ω≤ ∀ ∈ℜ  

 

or, equivalently 
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( )( )sup 1.0P j
ω

σ ω
∈ℜ

≤                (12)                                                       

The left side of Eq. (12) defines the H∞ norm of the transfer 
function |P|∞ and indicates the worst case possible gain 
from the signal ŵ to the signal ẑ . It is assumed implicitly 
that P represents a stable LTI dynamic system. 

 

6. WEIGHTING FUNCTIONS 

The weighted plant model for the reference example  
is shown in Fig. 4. For the machine tool spindle problem, 
the loads were assumed to act at the bearing locations while 
each of the position sensors was assumed afflicted  
with noise. The bearing loads are summarized in Tab. 1 
while the sensor noise was 0.6 micrometers broad-band. 
The performance measures included amplifier voltage 
(limited to 300 volts), coil current (limited to 7 amps above 
a 5 amp bias), and journal displacement at the two bearing 
locations (limited to 50 micrometers at frequencies above 
0.002 Hz, and 0.5 micrometers below this).  

 
 

 
 

Fig. 4. Weighted model: weighting functions Ww and Wz normalize the load and perfiormance signals 

 
 
Tab. 1. Bearing load parameters 
 tool tip end drive end 
DC load 300 N 130 N 
first break 0.0001 Hz 0.001 Hz 
midfrequency load 80 N 50 N 
second break 40 Hz 40 Hz 

7. MODEL UNCERTAINTIES 

A significant goal of µ-synthesis is to design controllers 
which are robust to variations in plant dynamics. A simple 
example is the effect of gyroscopics: the dynamics  
of the rotor at standstill are substantially different from 
those observed when spinning at 16000 RPM. The rotor 
model contains the rotor spin rate explicitly: 

( )Mx D G x Kx f+ +Ω + =                   (13)                                        

in which the gyroscopic behavior of the rotor mass  
is represented by the matrix G and Ω is the spin speed of 
the rotor. If a controller is designed for the rotor with Ω = 

0, then there may be no guarantee that the system will  
be stable for other values of Ω: obviously undesirable. 
 

In the µ-framework, uncertainties are represented  
as feedback gains connected to the plant where the nominal 
value of the feedback gain is zero but it is understood that 
the gain could lie anywhere inside a real range or complex 
disk. By convention, the size of this range is chosen  
to be 1.0. As an example, suppose that our rotor had a seal 
acting at some location along the shaft. The seal might have 
some nominal cross-coupled stiffness of 1000 N/m but with 
uncertainty of 300± N/m: 
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This can be represented by 
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The first part of the relationship defines the nominal 
behavior and would be included in the core model.  
The second part defines a feedback with nominal value  
of zero. The scale 300 N/m would be applied to the input  
or output matrices tying this feedback into the rotor  

model and the remnant would be the uncertainty matrix, 
denoted Δ. 
 The product of adding weighting functions  
and uncertainty representations to the base model  
is depicted in Fig. 5. 

 

 
Fig. 5. Model with weighing functions and uncertainty added 
 
 

For the machine tool spindle, the primary uncertainties 
were judged to be actuator properties, modal properties  
for the two bending modes retained, and, of course, rotor 
speed. The uncertainties in actuator gain and bearing 
negative stiffness were modeled as 3% and 15% real 
uncertainties of nominal value, respectively. The modal 
frequencies of the first and second modes were modeled  
as 1% complex uncertainty of nominal value for each 
mode. These latter uncertainties discourage the synthesis 
machinery from introducing controller dynamics that 
precisely cancel the dynamics associated with these modes 
as, for instance, very sharp notch filters. Rotor speed  
was modeled as 8000 RPM with an uncertainty of 100%  
in order to obtain a stabilizing controller for the speed 
range  
from 0 to 16000 RPM. 

8. THE MU-SYNTHESIS PROBLEM 

Having established that assessment of stability 
robustness and robust performance of an AMB system may 
be written as a problem in computing the maximum 
structured singular value, or µ, of the closed loop system,  
it is natural to consider the possibility that a controller 
could be automatically synthesized to minimize this μ 
measure and thereby maximize the robust stability and 
robust load rejection of the resulting system. This is the 
objective  
of µ-synthesis.  

Concisely, µ-synthesis seeks to find that controller H  
for which the maximum structured singular value of the 
closed loop system P is minimized. As with H∞ synthesis, 

once the specification is established, solving for the 
controller is a matter of “turning a crank”. That  
is, reasonably effective computational tools exist to solve 
this problem. An example is the function “dksyn” provided 
by the Robust Control Toolbox of MatLab (The 
MathWorks, 2004). 

Unlike the H∞ synthesis problem, solutions  
to the µ-synthesis problem cannot be found closed-form  
and require iteration. The most common iteration scheme  
is called D−K iteration. While the details of this iterative 
process are beyond the scope of this paper, it is worth 
pointing out that D−K iteration adds order to the controller 
beyond the order of a comparable H∞ controller so that  
the order of a µ-controller can be substantially larger than 
that of the plant plus its weighting functions. This iterative 
character of the solution can also sometimes lead to failure 
of the solution which, in this case, does not always imply 
non-existance of a solution.  

Several μ-controllers were designed for the system 
described by Fig. 1 and just two examples are illustrated  
in Fig. 6, where one of the controllers was optimized  
to achieve the best machining performance in terms of high 
surface finish quality. Both controllers were implemented  
as discrete time, state-space systems with a sampling rate  
of 10 kHz. The resulting optimized controller was 88th 
order and was reduced to 44th order by model order 
reduction using Hankel singular value based algorithms. 
Differences between the controllers were generated  
by changing the performance and load weighting functions. 
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Fig. 6. Comparison of two µ-controllers; one is optimized for machining 

 
 

To determine the spindle stiffness at the tool tip, with 
the rotor supported on each the PID, the μ-controller, and 
the optimized μ-controller, impact testing was carried out 
with an instrumented hammer. The results presented in the 
upper plot of Fig. 7 show the advantage of μ-controllers, 
especially in the vicinity of the first and second modes, 
where the PID stiffness is significantly lower. Over the 
wide range of frequencies the PID controller is much less 
stiff while the optimized μ-controller provides the highest 
stiffness.  
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Fig. 7. Stiffness of the spindle at the tool tip extracted  
           from the hammer test for PID and μ-controllers 
 

9. CONCLUSIONS 

A well formulated performance assessment tool  
for evaluating controllers for AMB systems (and practically 
any other essentially linear system with primarily steady 
state performance objectives) can be efficiently constructed 
in the form of a µ-analysis problem. Such a tool  
is compatible with any linearized AMB/rotor model and 
any linear controller and, as such, is entirely suitable  
for assessment of hand-synthesized controllers such as PID 
with notches and other specialized embellishments.  
At the same time, having produced such an assessment tool, 
automated synthesis is just a short step away and involves 

essentially no investment on the part of the controller 
design engineer.  

The presented simulation and experimental results show 
the potential of μ-synthesized control of AMB machining 
spindles for improved cutting performance. In particular, 
the μ-controllers were able to realize substantially higher 
broad-band spindle tip stiffness that could be achieved 
(through manual tuning) by the PID + notch controller. 
Perhaps a more important advantage is the structure  
of the synthesis process provided by μ−synthesis.  
In particular, the synthesis outcome is guided by choice  
of performance functions and load models and the resulting 
closed loop performance reflects these functions in a direct 
manner. Consequently, there is less need for synthesis 
tricks with the µ- approach. Further, the µ- approach 
provides  
a convenient and rational repository for accumulating 
system knowledge through model and weighting function 
refinement. Finally, the µ-approach can provide guarantees 
of robustness to wide ranges of system parameter such  
as the operating speed range without requiring gain 
scheduling or other special techniques: all µ-synthesized 
controllers developed in the course of this study were stable 
over the entire operating range while aggressive PID + 
notch designs did not reliably meet this requirement. 
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