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Abstract: A class of positive hybrid linear systems is introduced. Three different methods for computation of solutions of the
hybrid system are proposed. The considerations are illustrated by numerical example. Simulations of solution have been

shown for the methods.

1. INTRODUCTION

In positive systems, inputs, state variables and outputs
take only non-negative values. Examples of positive
systems are industrial processes involving chemical
reactors, heat exchangers and distillation columns, storage
systems, compartmental systems, water and atmospheric
pollution models. A variety of models having positive
linear systems behavior can be found in engineering,
management science, economics, social sciences, biology
and medicine, etc.

Positive linear systems are defined on cones,

not on linear spaces. Therefore, the theory of positive
systems is more complicated and less advanced.
An overview of state of the art in positive systems theory
is given in the monographs Benvenuti and Farina (2004),
Kaczorek (2001). Recent developments in positive systems
theory and some new results are given in Kaczorek (2003).
The realization problem for positive discrete-time
and continuos-time systems without and with delays was
considered in Benvenuti and Farina (2004), Farina and
Rinaldi (2000), Kaczorek (2001, 2004, 2005, 2006),
Kaczorek and Bustowicz (2004).
The main purpose of this paper is presentation and
comparison of three methods for computation of solution of
positive 2D hybrid systems. Three different solutions of the
hybrid linear systems will be derived. The considered
methods will be illustrated by numerical example. Using
Matlab/Simulink there will be performed comparison
simulations of the methods.

2. EQUATIONS OF THE HYBRID SYSTEMS

Let R™™ be the set of nxm matrices with entries form
the field of real number R and Z, be the set of nonnegative
integers. The nxn identity matrix will be denoted by I,.

Equations of the 2D hybrid linear system have the form

Xl(t,l) = A“Xl(t,i) + A12X2 (t,l) + Blu(t,i) ,te R+ (13.)

Xz(t,i + 1) = A21X1 (t,l) + A22X2(t,i) + Bzu(t,i) , ie Z+ (1b)

y(t,i) =Cix (t,i) + Cy Xy (t,1) + Du(t, i) (1c)

where Xl(t,i)zw, X (Li)e R™, X, (ti)eR™,

u(t,i)ERm, y(t,l)ERP and Alls A125 Ale A223 Bl» BZa Cls CZa D
are real matrices with appropriate dimensions.
Boundary conditions for (1a) and (1b) have the form

x(0,i)=x(i), i€Z, and X, (t,0)=%,(t), teR,  (2)

Note that the hybrid system (1) has a similar structure as the
Roesser model (Kaczorek, 2001; Klamka, 1991; Roesser,
1975).

Let R,"™ be the set of nxm real matrices with nonnegative
entries and R,", R,™*.

Definition 1.

The hybrid system (1) is called internally positive
if x(t,i)eRM, x,(t,i)eR?, and y(t,i)eRP, teR,,
icZ, for arbitrary boundary conditions ¥ (i)e R,

ieZ,, %) eR], teR, and inputs u(t,i)eRT,
teR,,ieZ,.

Let M, be the set of nxm Metzler matrices (real matrices
with nonnegative off-diagonal entries).

Theorem 1.

(Kaczorek, 2001) The hybrid system (1) is internally
positive if and only if

nyxn N, XN N, XN
Al €My Ap eRYITT2 LAY €RZTT Agy eR2TE,

B, eRI™ B, eR12*™M C, eRP™M C, eRP™ D RP™
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3. COMPUTATION OF SOLUTIONS

Method 1.

Along with equations (1a), (1b), consider the following
determining equations

1 1 2

Xk+1,i = A Xki + A Xgi +BlUg (3a)
2 1 2

Xiiv1 = Ao Xy i + A X + BoUy (3b)

with initial conditions of the form

X0 =0 fori=0,l,. (4a)
Xio =0 for k=0,1,. (4b)
0 lp, k=i=0 4o
- C
b 0, k2 +i2£0
Lemma 1.

The following conditions hold:
for k=1,2,...

(A, +Aw(l, - AW A ) x

(B +Aw(, ~ Aw)'B) = Z X, w

(I, =AW A WA, + AW, -AW" A" x
(B, +Aw(l, —A,w)'B,)= SX w

for j=12...

(A, + AW, =AW A" x

B, +AW(, —Aw B)=Y X w

(1, =AW AWA, + Aw(l, —AW A)" x

(B, + AM(I ~AW'B)=Y X w

and

o0
(In, = ApwW) ' Bow= D" X3 jw!
j=0

0
(In, = Apw) 'Biw= Zx&,owk
k=0

Where |w| <w;, weC and w; is a sufficiently small positive
number. Proof by induction is given in (Marchenko
and Poddubnaya (2005), Marchenko at al (2005).

Applying the Laplace transformation with respect to t
and the Z-transformation with respect to i, we write
the equations (1a), (1b) in the form
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Ls-Ar —Ay [%62] [B X,0.2)
{—Azl 2R %62 18,07 26s0)]
where X, (5,2) = Z[L(X (L, i)], k=12

X](Oa Z) = Z[Xl (07 |))], Xz(S,O) = L[Xz(t,())] .

The equations (5) can be rewritten as

1 s-A-A(1zZ-A)A 0 [x,@,z)}
-A L 2-A | [X,(52)

21

[B+A (1 2-A)' B}
T UG )+ (6a)
B

L 2

(X 0.2+A( 2-A) X (s, 0)}

zX (s,0)

and

[1,5-A, -A, X (5,2)
|0 'nEZ-AZ-AI(IHlS—AI)’AJ {Xz(s,Z)}
Bl
|B,+A(l,s-A)'B

X,(0,2)
| 2X,(5.0)+A, (1 s=A )X (0.2)

}U(s, )+ (6b)

It follows from (6) and Lemma 1 given in (Marchenko
and Poddubnaya (2005), Marchenko at al (2005), that

=1 N
xl<s,z>=ZF<Al+A2<In:z—/w‘ A)
{(BI +A2(|n22—'%2)4 BZ)U(S, 7)+
X 0,2)+A,(1,2-A) 2X,(5,0)} =
= 1 1
Zs—k<Al+Azz"<lm—Azz“fAz,) x

{(B +Azz*‘(|nz -AZ")' B, 2)+
X 0,2)+A,(1,2-A) " 2X,(5,0)} =

G I |
DX U2+
s 7

k=1

N 1 k-1
Zs_k(’*l”*zz"('n:—%Z"M,) X,(0,2)+

- 1 1 —1\-1 k-1
ZS—k<A]+Azz*<Inz—Anz ) A X
Azz"(lnz -A,z") X (5,0) (7a)



Similarly, we obtain

— 1 1 —1\-1 j-1
X,(62=2 (A, +AS'(, ~AS) A"

(B +As'(, -As) B+
2X,(5,00+As (I, —AS) ' X(0,2)} =

Z—Zxk , —U(S 2)+ (7b)
Z;(Ah +As" (1, —AS)'A) 2K (5,00 +

c 1 1 —1\-1 j-1
2 (A +AS'(, —AS) A
Alsil(lnl _'%1571)71 X1(09 Z)

Let Xgi=Xgi, Xgi=Xgh be the solution of(3a) (3b)
with By =1y, By =0 and Xg; = Xk5, Xg;=Xij with
Bi=0, By =1y,

Then we have Xp% = A ¥ "B =0, X2} = Ay* B, =0,
k=12,... and

X,(5,2)= ZZ——k X, U(s,2)+

liO

o (8a)
Z — x;‘]xl(o z)+zz ]—kx‘z X, (5,0)
X,(s,2) = ZZ—— X; U(s,2)+

k=0 j=I (8b)
ZZ o —kxijz(s 0)+ZZ—— X' X,(0,2)

Using inverse transforms to (8), we obtain the solution
(8b)of hybrid linear system (1) in the form

X (t,i) = ZZ ‘i ((k u(z,i— j)dr +
ZZ x](O,i— i)+ (9a)
t-o"
X i X,(7,0)dz
X { o
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X, (t,i) = ZZ ) )) u(z,i—j)drc+

DS

k=1 j=1

Zxolu(t I_ J)+X0I+l 2(t 0)+

k 1

x (01— )+
(9b)

ix j _1)'x(r,0)dr

k=1
Method 2.

Applying the Laplace transformation with respect
to t and the Z-transformation with respect to i, we write
the equations (1a), (1b) in the form

InI _S_IAH _S_lAlz {XI(S,Z)} _
| 2'A, 1 -7'A | [ X))

_slBl} {s‘xl(o,z)}
U(s,2)+
| 27'B, X, (s,0)

and

xs.2] [l,-s'A,  —s'A, |
XZ(S,Z) B _ZilAm Inz_zilAzz

Hs" Bl} [s‘lxl(o, z)D
Uu(s,z)+
z"'B, X, (s,0)

where X (,2) = Z[L(X ()], k=12
X1(0,2) = Z[x1(0,1)], X1(5,0) = L[*,(t,0)].

(10)

an

Let
A A 0 0
Tio { ! ”} To. { } (12)

and

-1 -1

I, =S A, —SA;
-1 -1

—Z A21 Inz_Z Azz

1 ~17-1
_TO,IZ ]

(13)

:ZZTLJ.S“Z‘j

i=0 j=0

[InlJrn2 _TI,OS_

where

| for i=j=0
n +n,
Ti,j = Tl,OTifl,j +T0,1Ti,jfl for i, j 20,1,... i+ j >0 (14)
0 for i<0 or/fand j<O0
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From definition of inverse matrix and (13), we have
o0 00
-1 -1 —i—j
[ +n, =TLoS  —ToaZ '] ZZTi,jS ' =1, 40, (15)
i=0 j=0

Comparison of the coefficients at the same powers of s and
z of the equality (15) yields (14).

Substituting (13) into (11), we obtain

X (s,2) i B s'X(0,2)])
[xxs,z)} AL q Bj s {XM D_

e SR 4T 57 B (s, 2)+

i=0 j=0

Sy

© @ 1 X(0,z . 0
Z-[ ( )}T”S_.Z{ }
i=0 j=0 0 ’ Xz(Sao)

(16)
h B/ = Bl B, — 0
where Bio =1 1> Bor = B, |
Applying the inverse transforms to (16), we obtain
X] (t’l):| T)
; e u(z,hdzr +
|:X (t,l) ;; kil IOJI
5 (t 2')k’l
kZ:Z ki1 B, WU(TJ)dT—i-
(17)
iz [x (0, |)}
— kil k' 0
e t k-1 O
Z _[ (=0 dr
k=0 9 D! | X,(z,0)
Method 3.

From definition, solution of the differential equation (1a)
has the form

t
xl(t,i)=eAntxl(o,i)+J'eAn“‘T>(A12x2(r,i)+Blu(r,i))dr (18)
0

and solution of the difference equation (1b) is given by

X (i) = A X (10) + D Any (A (LR) + Byu(tk))  (19)
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Substituting (19) into (18), we obtain

t
X (t,i) = e*'x (o,i)+je‘\l“'”B,u(r,i)dwr

0

t
j M IA A X (7,0)d7 +

i—1

D [eM 7 ALA Bz, k)dr + (20)

=0

=

e TAALTTA X (7, K)d T =

I
38

x

X (t, |)+ZP X (LK)

where

X (t,i)=e"x (0,i)+

" IAAX 7.0+ Bu(zde+

0

i-1t ' 21
ZJ.eA“t’T’AZA&Z"k’IBN(r, K)dz 2D

k=0 ¢
t

RE®=[e""AAJA f(0)dz, jeZ,
0

Substituting (20) into (19), we obtain

X, (L) =A% (0)+ 3 A Bu(t.k)+

SOAA MK (0.K)+
k=0

i-1 t
Zj Hep @M CIBU(z, K)dr+
k=0 ¢
IJ' (22)
0

i1t

2

k=0

i-1 k t
S>> A AL A A B+
k=0 1=0 ¢

ASIA
AR AKX (0

A AR AN A (e

Solutions of hybrid linear system (1) have the form (20)
and (22).



4. NUMERICAL EXAMPLE

Transfer function of the hybrid system is given by

T(s,2)= 287+S+32+2 (23)
sz—0.1s+0.9z-0.1

and its realization has the form (n=1, m=1)

A1=[-09] Ay=[i 0] Azl{om} Am[of g}

_fi Bz{(’f} c=(12] c,=p 1] p=[)

24

Let the initial conditions be given by X;(0,0)=0,

x2(0,0):m, x1(0,i) =1, xz(t,0)=m for i = 12,...,

te[l,0) and input u(t,i)=1 for t>0 and i >0.
Find x(L1), X, (1,1) .

Using method 1 we obtain:

x(1,1)= ZZX u(Ol i+

0 IX _j)+
Z2X e

c ]21

;xk,zﬁxz(o,m

- (25a)
o1 |
;k—!(xwu(o, 1)+ X, u(0,0))+
1 X! x (0,1)+ X" x (0,0
é(k—l).( X (0D + X%, 0,00+
Zx” x2(00)

k=1

o 1

x,(1,1) = ZZXKJ u(Ol i+

ZZ

ST (k- b

1 o0
> X u(,1- D+ X2
[ PR
o 1k o k-1

1 1
— X, ,u(0,0)+
2. Xu(0.0) Z‘(k—l'

k=1

k-1

0,1- P+

k
%xz(o, 0)+X,3%(1,0)= " (25b)

xf}lx1 (0,0)+ X, u(l,0)+

0 lk
ZXEigxz(o,O)+X§ixz(L0>

k=1

Taking into account the initial conditions and the input we
obtain
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k.0

=1
XD =2 K ><“>+Z(k_1),

X (L) =Y —X? +X;, + X2
o k! 1
If we make three iterations, then the solution takes the form

3
1
Xl(l,l)ZZF( ko Xk|)+z kO:
k=1 .

(k—1>'

(26)

1
(x,‘,0 + xlﬁl)+5(x;,0 + x;’])ﬂug(x;,0 + x;yl)+

1
Xll,i) + le,lo +5 Xsl,lo = Bl + AIZBZ +
1
E(AIIBI + AHAIZBZ + A12A2181)+
1
E(AuzBl + A112A12Bz + AH'A\zAuBl +

AAAB)HLEA += A

3 1 1

X (LD=Y =X +X;, +X3| | =
k=1 k! 1
1 1 1

X} +5 X3, +g X3+ Xo, + X0, L} =

1 1., 1 27)
AZlBl +5A21A1181 +gA21A11 Bl + Bz + Azz 1

Substituting (24) into (27), we obtain final value
X (L) =1,261

0,207 (28)
X (L= [z 752}

Using method 2, we obtain:

{xl(l,l)}iiTk“Bm 16! SO+

k=0 1=0 (k+1)!

0 1 1
2.2 TBy U(O 1)+ (29)
N 1 X.(0,|) = I 0
I T —
22 “'k!{ 0 }Z k"k!{xz(o,oj

Taking into account the initial conditions and the input
we obtain

X, (1,1) il
{XZ(I,I)} kz;‘ B K+1)! 1)'

o 0 o 1 1
ZO k.0 10(k +1)! ; k.0 01 ! ; k’ok_!{()}

(30)
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If we make three iterations then the solution takes the form
X (1,1)
X, (1,1)

T B

1,0 710

1 1
=T,B,+B,+B, + +T B —+
0 2

1s) o2

+T, B, —+

0 T

1 1 1[1}
_+T20801_+T20_ =

6 "2 alo
MEH M o
+ + + +— +
IB] 0 BZ 0 2AZI'%IBI
17\18} {AZBZ} {A}

— + +

2] 0 0

[(AAA, +A, AZA)B}

1
—+T,B,+T,

1,0 ~01

T .B

2,0 "10

€2

1
6l  (AAA)B

__A]AIBI} [A AZ 2 { }
6l 0 i)

and

X, (1) =1,247

0,107
X2 (lal) = 1753

—_—

(32)

Using method 3, we obtain:

For i =0, we have
1

X,(1,0) =", (0,0)+ [ €A X (z,0)d +

[e"Bu(z.0)dz =

e"x (0,0)+e™A A x (0,0)— A'A x (1,0) +
e™ A 'Bu(0,0)— A 'Bu(l,0)

x, (L)) = A x (1,0)+ A _x (1,0)+ B u(1,0)

Substituting the initial conditions and the input, we have

(33)

1
X(1,0)=-A A, H*e‘“ A'B - A'B =1177]

1
X,(L1) = A, (-A/A, H +e"A'B-A'B)+  (34)
1 B 0,218
—+ =
Ao 1] 13,948

and, fori=1

64

X (L1) = e x;(0,1) + ™1 AT A X5 (0,1)

(35)

— AT Ao (L) + ™1 AT'BLU(0,) - A'Byu(Ll)

where

X2 (0,1) = Ag;1(0,0) + Axp x5 (0,0) + Bou(0,0) = By

Substituting the given data, we obtain
(L) =eM e AT A B, - AﬁlAl{

+eMAB, - A B, =1,263
Final value

x( (1) =1,263
(LD~ 0,218
257713948

Remark 1.

Obtained results for

0.218
3.948

(36)

(37

(38)

Xi(1,1), X(1,1) are different for

different method (Tab. 1). To obtain some valid results

more computations for i = 2, 3,...

need to be performed.

The number of iteration K in (27) and (31) need to be also

increased.

Tab. 1. Final values for X;(1,1), X, (1,1) (fork=3)

State variable Method 1 Method 2 Method 3
X1(1,1) 1,261 1,247 1,263
X21(1,1) 0,207 0,107 0,218
X22(1,1) 2,752 1,753 3,948

5. MATLAB/SIMULINK SIMULATIONS

Using Simulink toolbox we can model given transfer

function (25) in the form

witiy

Fig. 1. Matlab/Simulink state variable diagram for transfer

function (25)
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Simulating i from 0 to 10 with sample time equal one, we
obtain ending values of the simulation:

Fort=1,i=12 and k =30 we obtain

Tab. 3. Final values

X =1,249
State Method 1 Method 2 Method 3
Xy = {0’125} @1 variable | (dash dot line) | (dash dash line) |  (solid line)
2,499 X1 1,143 1,147 1,148
y = 6249 X 0,123 0,124 0,124
X22 2,376 2,386 2,387
Next step is implementation of considered methods Execute 78,266 64,172 0,031
in Matlab. time [s]
For simulations we use given initial conditions and input, )
also the number of iterations is increased (in (29) and (33)). Fort=10, i =6 and k = 30 we obtain
After performing some simulations, we obtain the
following results Tab. 4. Final values
Table 2 contains the final values from simulations _for thre_e State Method 1 Method 2 Method 3
methods. Those results are the state vectors X;(t,i), Xx(t,i) variable | (dash dot line) | (dash dash line) (solid line)
fort=1 and i = 6 with k = 30. X, 1,250 1,250 1,250
Figure 2 shows the diagram generated by Matlab. Diagram Xa1 0,125 0,125 0,125
shows changes of the values of state vectors with the X20 2,500 2,500 2,500
number i of steps. Execute 21,844 18,251 0,016
time [s]
Tab. 2. Final values
State Method 1 Method 2 Method 3 | Simulink
variable | (dash dot (dash dash (solid line) | response
line) line)
X, 1,143 1,147 1,148 1,249
X1 0,123 0,124 0,124 0,125
X22 2,376 2,386 2,387 2,499
Execute 21,744 18,251 0,032
time [s]
4
T T T S RIIIII —
UEI ns 1 15 2 25 3 35 4 45 5

i steps

Fig. 2. Computational results for t = 1 and i = 6 with k = 30.
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“alue of state variables for i steps

45

35 e

B B e et ) -

W22

State variables x1, <21, 122

s ERTRE cheene

1

Fig. 3. Computational results for t=10, i =6 and k= 30

6. CONCLUDING REMARKS

General conclusion is that all three methods gives the
same final results.

The first two methods are similar. To compute the
solution X(t,i) using those methods we do not need to know
the values of the solution in the previous steps but we have

to compute in the first method the matrices X&,i, Xf,i

using the determining equations (3) or the matrices Tijj
defined by (14) in the second method. In the third method
the solution X(t,i) is computed recursively using the initial
conditions.

From the simulations it follows that the three methods
give similar results after at least three steps.
The calculations have been performed on the Pentium M
—1,7GHz processor with 1IGB RAM.
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