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Abstract : A new class of positive different orders fractional 2D linear systems is introduced. A notion of (α, β)  orders 
difference of 2D function is proposed. Fractional 2D state equations of linear systems are given and their solutions  
are derived using 2D  Z-transform. The classical Cayley-Hamilton theorem is extended to the 2D fractional linear systems. 
Neccesary and sufficient conditions for the positivity, reachability and controllability to zero of the fractional 2D linear 
systems are established. 

 
 

 
 

1. INTRODUCTION 

The most popular models of two-dimensional (2D) 
linear systems are the models introduced by Roesser 
(1975), Fornasini-Marchesini (1976, 1978) and Kurek 
(1985).  
The models have been extended for positive systems  
in Kaczorek (1996, 2002, 2005) and Valcher (1987).  
An overview of 2D linear system theory is given in Bose 
(1982, 1985), Gałkowski (1977, 2001), Kaczorek (1985) 
and some recent result in positive systems has been given  
in the monographs Farina and Marchesini (2000), Kaczorek 
(2002) and in paper Valcher (1977). Reachability  
and minimum energy control of positive 2D systems with 
one delay in states have been considered in Kaczorek 
(2005). The notion of internally positive 2D system (model) 
with delay in states and in inputs has been introduced  
and necessary and sufficient conditions for the internal 
positivity, reachability, controllability, observability  
and the minimum energy control problem have been 
established in Kaczorek (2005). The notions of positive 
fractional discrete-time and continuous-time linear systems 
have been introduced in Kaczorek (2003, 2007). The notion 
for 2D positive fractional hybrid linear systems has been 
extended in Kaczorek (2008). The realization problem  
for positive 1D and 2D linear systems has been considered 
in Kaczorek (2003, 2005), Kaczorek and Busłowicz (2004) 
and Kaczorek (2007). Recently, a new class of fractional 
2D linear systems has been introduced in Kaczorek (2008). 

In this paper a new class of positive fractional 2D 
linear systems will be introduced. A notion of (α, β) orders 
difference of 2D function will be proposed. Solution  
to the fractional 2D state equations of the linear systems 
will be derived using the 2D Z-transform. The classical 
Cayley-Hamilton theorem will be extended to the 2D 
fractional linear systems. Necessary and sufficient 
conditions for the positivity, reachability and controllability 
of the 2D linear fractional systems are established.  

To the best knowledge of the author the positive 
fractional 2D linear systems have not been considered yet. 

2. FRACTIONAL 2D STATE EQUATIONS 
          AND THEIR SOLUTIONS 

Let mn×
+ℜ  be the set of nonnegative real n×m matrices and 

1×
++ ℜ=ℜ nn . The set of nonnegative integers will be 

denoted by Z+ and the n×n identity matrix will be denoted 
by In. 
 
Definition 1.  
 
The (α, β) orders fractional difference of an 2D function xij 
is defined by the formula 
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The justification of Definition 1 is given in Appendix A. 
Consider the (α, β) order fractional 2D linear system, 
described by the state equations 

1,2,110

1,2,1101,1
,

++

++++

+++

++=Δ

jijiij

jijiijji

uBuBuB

xAxAxAxβα

                    (2a) 

ijijij DuCxy +=                                                             (2b) 



Tadeusz Kaczorek 
Positive different orders fractional 2D linear systems 

 52 

where p
ij

m
ij

n
ij yux ℜ∈ℜ∈ℜ∈ ,,  are the state, input and 

output vectors and ,nn
kA ×ℜ∈  ,2,1,0, =ℜ∈ × kB mn

k  

., mpnp DC ×× ℜ∈ℜ∈  
Using Definition 1 we may write the equation (2a) in the 
form  
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From (1b) it follows that the coefficients cα,β(k,l) in (1a) 
strongly decrease when k and l increase. Therefore,  
in practical problems it is assumed that i and j are bounded 
by some natural numbers L1 and L2. In this case the 
equation (3) takes the form 
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Note that the fractional systems are 2D linear systems with 
delays increasing with i and j. 
The boundary conditions for the equation (3) (and (3a)) are 
given in the form  

++ ∈∈ ZjxZix ji ,and, 00                                        (4) 

Theorem 1.  
 
The solution of equation (3) with boundary conditions (4)  
is given by 
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where the transition matrices Tpq  are defined by the formula 
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Proof.  
 
Let X(z1, z2) be the 2D Z-transform of xij defined by 
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then from (3) with (4) we obtain 
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Comparison of the coefficients at the same powers of z1  
and z2 of (12) yields the formula (6). 
Substituting (11) into (9) we obtain 
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(13) 
Using the 2D inverse Z transform to (13) we obtain the 
desired formula (5).   

3. EXTENSION OF THE CAYLEY-HAMILTON           
THEOREM 

From (10) we have  
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It is assumed that i and j are bounded by some natural 
numbers L1, L2 which determine the degrees N1, N2. 
From (14) and (11) it follows that 
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where Tpq  are defined by (6). 

 
Theorem 2.  
 
Let (16) be the characteristic polynomial of the system (2). 
Then the matrices Tkl satisfy the equation 
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From the definition of inverse matrix and (16), (18) we 
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where ),(Adj 21 zzG  is the adjoint matrix of ),( 21 zzG . 
Comparison of the coefficients at the same power 

21
21

NN zz −−  of the equality (20) yields (19) since the 

degrees of ),(Adj 21 zzG  are less than 1N  and 2N .  
Theorem 2 is an extension of the well-known classical 
Cayley-Hamilton theorem for the 2D fractional system (2). 

4. POSITIVITY OF THE FRACTIONAL 2D 
LINEAR SYSTEMS 

Lemma 1.  
 
a) If  10 << α  and 21 << β  then 

0),( <lkcαβ  for ,...3,2,...;2,1 == lk                          (21a) 

b) If 21 << α  and 10 << β  then 

0),( <lkcαβ  for ,...2,1,...;3,2 == lk                          (21b)    

Proof. 
 
 The proof will be accomplished by induction. 
The hypothesis is true for 1=k  and 2=l  in (21a) since 
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The proof of (21b) is similar.  
 
Lemma 2. 
 
 If (21) is met and 
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Proof.  
 
If the conditions (21) and (22) are satisfied then from (6) 
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Definition 2. 
 
The system (2) is called the (internally) positive fractional 
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Theorem 3.  
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Proof. Necessity.  
 
Let us assume that the system is positive  
and x00–eni, i=1,…,n (eni is the ith column of In) x01=x10=0 

,0=iju  i,j∈Z+. Then from (3) for i=j=0  and ui,j=0 i,j∈Z+ 

we obtain ,0011
n
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Sufficiency.  
 
If the conditions (24) are met then by Lemma 2 
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Remark.  
 
From (1b) and (3) it follows that if βα = , 10 << α  then 

0),( >lkcαβ  for ,...2,1, =lk  and the fractional 2D system 

(2) is not positive. 

5. REACHABILITY AND CONTROLLABILITY           
TO ZERO 

Definition 3.  
 
The positive fractional 2D system (2) is called reachable  
at the point ++ ×∈ ZZkh ),(  if and only if for zero 
boundary conditions (4) (xi0=0, i∈Z+, x0j=0, j∈Z+) and 
every vector n

fx +ℜ∈  there exists a sequence of inputs 
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such that .fhk xx =  

A vector is called monomial if and only if its one 
component is positive and the remaining components are 
zero. 
 
Theorem 4. 
 
The positive 2D fractional system (2)  
is reachable at the point (h, k) if and only if the reachability 
matrix 
 

 
1 1 2 2
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contains n linearly independent monomial columns. 
 
 
Proof.  
 
Using the solution (5) for kjhi == ,  and zero boundary 
conditions we obtain 
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and T denotes the transpose. 
 
 
For the positive fractional 2D system (2) from (27) and (26) 
we have ,, 1
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From (28) it follows that there exists a sequence m
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for hkDji ∈),(  for every n
fx +ℜ∈   if and only if the 

matrix (26) contains n linearly independent monomial 
columns.  
The following theorem gives sufficient conditions  
for the reachability of the positive  fractional 2D system (2). 
 
Theorem 5.  
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Example 1.  
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The first two columns of (32) are linearly independent 
monomial columns and by Theorem 4 the positive  
fractional 2D system (2) with (31) is reachable at the point 
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From (33) it follows that the condition (30) is not satisfied 
in spite of the fact that the system is reachable at the point 
(1,1). Note that the system is reachable at the point (1,1) for 
any fractional orders (α, β) 0 < α < 1, 1 < β < 2 (or 1<α <2, 
0 < β < 1) and any matrices kA , k = 0, 1, 2. 
  
 
 
 
 
 

Definition 4.  
 
The positive fractional 2D system (2) is called the system 
with finite memory if its characteristic polynomial has the 
form  

21
2121 ),(det nn zczzzG =                                                (34) 

where c is a constant coefficient. 

Lemma 3.  
 
If the positive fractional 2D system (2) is with finite memory then 

, 1 1 1, 1 0 0 1, 2 1, 1 0 0 1, 1 0 00
1 1

( , ) ( ) ( ) 0
ji

i p j i p j p i j q i j q q i jbc
p q

x i j T A T A x T A T A x T A x− − − − − − − − − − − −
= =

= + + + + =∑ ∑     (35) 

 
for 21, njni ≥≥  and any nonzero boundary conditions (4). 
 
 
Proof.  
 
Using the expansion (11) and (34) we obtain 0=ijT  for 

21, njni ≥≥  and the equality (35) for any nonzero 
boundary conditions (4).  
 
Definition 5.  
 
The positive fractional 2D system (2) is called reachable for 
the nonzero boundary conditions (NBC) 

++ ∈ℜ∈ Zix n
i ,0  and ++ ∈ℜ∈ Zjx n

j ,0                      (36) 

at the point ++ ×∈ ZZkh ),(  if for every vector n
fx +ℜ∈   

there exists a sequence of inputs m
iju +ℜ∈   for hkDji ∈),(  

such that .fhk xx =  
 
Theorem 6. 
 
The positive fractional 2D system (2) is reachable for NBC 
at the point  ),(),( 21 nknhkh ≥≥  if and only if the system 
is with finite memory and the reachabilty matrix (26) 
contains n linearly independent monomial columns. 
 
Proof.  
 
Using the solution (5) for kjhi == ,  and taking into 
account that fhk xx =  we obtain 

),(),( khuRkhxx hkbcf =−                                          (37) 

where hkR  and ),( khxbc  are defined by (26) and (35) 
respectively. 

If the positive fractional 2D system (2) is with finite 
memory then by Lemma 3 there exists a point (h,k)  

(h≥n1, k≥n2) such that (35) holds and xf=Rhku(h,k). In  this 
case by Theorem 4 there exists a sequence of inputs 

m
iju +ℜ∈  for hkDji ∈),(  satisfying the equality (28).  

If it is not the case then ),(),( khuRkhxx hkbcf ∉−  since 
by assumption the NBC (36) are arbitrary and the vector 

n
fx +ℜ∈  is also arbitrary. In this case there does not exist 

a sequence of inputs m
iju +ℜ∈  for hkDji ∈),(  satisfying 

(37).   
 
Definition 6.  
 
The positive fractional 2D system (2) is called controllable 
to zero at the point (h,k) (h≥n1, k≥n2) if and only if for any 
NBC (36) there exists a sequence of inputs m

iju +ℜ∈  for 

hkDji ∈),(  such that .0=hkx  
 
Theorem 7.  
 
The positive fractional 2D system (2) is controllable to zero 
at the point (h,k) (h≥n1, k≥n2) if and only if the system  
is with finite memory. 
 
Proof.  
 
If the system is with finite memory then by Lemma 3 (35) 
holds for  h≥n1 and k≥n2. For xf=0 from (37) we have  

0),(),( =+ khuRkhx hkbc                                               (38) 

The equation (38) is satisfied for .0),( =khu  
If the condition (35) is not satisfied then does not exist 

mkhkhu ]1)1)(1[(),( −++
+ℜ∈  satisfying (38) since for the 

positive system mkhn
hkR ]1)1)(1[( −++×

+ℜ∈  and 

 .),( n
bc khx +ℜ∈    
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6. CONCLUDING REMARKS        

A new class of 2D fractional linear systems has been 
introduced. The notion of (α, β) orders 0 < α < 1, 1 < β < 2  
or 1 < α < 2, 0 < β < 1 fractional 2D difference has been 
proposed. The fractional 2D state equations of linear 
systems have been given and their solutions have been 
derived using the 2D Z transform. The classical Cayley-
Hamilton theorem has been extended for the fractional 2D 
systems. Necessary and sufficient conditions have been 
established for the positivity, reachability and 
controllability to zero of the fractional 2D linear systems.  
It has been shown that the fractional 2D system (2) is 
positive if 0 < α < 1, 1 < β < 2 or 1 < α < 2, 0 < β < 1. The 
fractional 2D system is not positive if α =β 
The considerations can be easily extended for fractional 2D 
linear systems with delays. 
An extension of these considerations for fractional 2D 
continuous-time linear systems is an open problem. 

 
Appendix. Justification of the definition 1. 
 
It is well-known that for a discrete function xi the n-order 
difference is given by  
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Using (A.1) for an 2D discrete function ijx  we obtain 
 

1 2 2 1 21 1 2
, ,

0 0 0

2 1 1 2
, ,

0 0 0 0

1 2

( 1) ( 1) ( 1)

( 1) ( 1) ( 1)
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n n n n nk k l
i j ij j i ij j i k j i k j l
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                                                                                   (A.4) 
 
is also well defined for n1=α  and n2=β, where α and β are 
any real numbers. Thus (A.4) can be used for defining the 
α,β orders of an 2D function xij. 
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