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Abstract : A new class of positive different orders fractional 2D linear systems is introduced. A notion of (e, ) orders
difference of 2D function is proposed. Fractional 2D state equations of linear systems are given and their solutions
are derived using 2D Z-transform. The classical Cayley-Hamilton theorem is extended to the 2D fractional linear systems.
Neccesary and sufficient conditions for the positivity, reachability and controllability to zero of the fractional 2D linear

systems are established.

1. INTRODUCTION

The most popular models of two-dimensional (2D)
linear systems are the models introduced by Roesser
(1975), Fornasini-Marchesini (1976, 1978) and Kurek
(1985).

The models have been extended for positive systems
in Kaczorek (1996, 2002, 2005) and Valcher (1987).
An overview of 2D linear system theory is given in Bose
(1982, 1985), Gatkowski (1977, 2001), Kaczorek (1985)
and some recent result in positive systems has been given
in the monographs Farina and Marchesini (2000), Kaczorek
(2002) and in paper Valcher (1977). Reachability
and minimum energy control of positive 2D systems with
one delay in states have been considered in Kaczorek
(2005). The notion of internally positive 2D system (model)
with delay in states and in inputs has been introduced
and necessary and sufficient conditions for the internal
positivity, reachability, controllability, observability
and the minimum energy control problem have been
established in Kaczorek (2005). The notions of positive
fractional discrete-time and continuous-time linear systems
have been introduced in Kaczorek (2003, 2007). The notion
for 2D positive fractional hybrid linear systems has been
extended in Kaczorek (2008). The realization problem
for positive 1D and 2D linear systems has been considered
in Kaczorek (2003, 2005), Kaczorek and Bustowicz (2004)
and Kaczorek (2007). Recently, a new class of fractional
2D linear systems has been introduced in Kaczorek (2008).

In this paper a new class of positive fractional 2D
linear systems will be introduced. A notion of (o, B) orders
difference of 2D function will be proposed. Solution
to the fractional 2D state equations of the linear systems
will be derived using the 2D Z-transform. The classical
Cayley-Hamilton theorem will be extended to the 2D
fractional linear systems. Necessary and sufficient
conditions for the positivity, reachability and controllability
of the 2D linear fractional systems are established.

To the best knowledge of the author the positive
fractional 2D linear systems have not been considered yet.

2.  FRACTIONAL 2D STATE EQUATIONS
AND THEIR SOLUTIONS

Let R be the set of nonnegative real nxm matrices and

K" =R The set of nonnegative integers will be

denoted by Z. and the nxn identity matrix will be denoted
by 1,.

Definition 1.

The (o, p) orders fractional difference of an 2D function x;
is defined by the formula

i J
APy =3 o (D)X g s (1a)

k=0 =0

n—l<a<n, n-1<pf<n; neN={2,.}
where Aa’ﬂxij :A?Aexij and

1 fork=0 or/and/=0

(1b)
caplkl) =1yt @@=D-@=k+DBB-D..(B-1+1)

kW

fork+7>0

The justification of Definition 1 is given in Appendix A.
Consider the (a, f) order fractional 2D linear system,
described by the state equations

a.p —
AT X = Agxy + Aixpy j + Ayx; (2a)
a
+Bo“ij + Blui”’j + Bz“i,j+1
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where x; e R",u; eR"™, y; e R’ are the state, input and

output vectors and A, e R™", B, eR"" k=012,
CeRP" DeRP™,

Using Definition 1 we may write the equation (2a) in the
form

xi+1,j+1

_A ‘x +A‘x1+l J +A2xl ]+l
i+l Jj+l1
z Z Cop (kal)xi—k+1,j—1+1 + By, +B“z+1 ;T Byu, 4l
k+1 >0
_ _ _ 3)
where AO =A0 —]n(lﬂ, A] =A1 +1nﬂ, A2 =A2 +1n6{.
From (1b) it follows that the coefficients ¢, g(k,/) in (1a)
strongly decrease when k& and [ increase. Therefore,
in practical problems it is assumed that i and j are bounded

by some natural numbers L; and L,. In this case the
equation (3) takes the form

Boupq +

X1, J+l Ao Al i+l,j Ain,j+l -
L+l L+l
z aﬂ (k l)xz k+1,j—-1+1 + B u + B1u1+] J + Bzui,j-H
k=0 =0
(3a)

Note that the fractional systems are 2D linear systems with
delays increasing with i and ;.

The boundary conditions for the equation (3) (and (3a)) are
given in the form

xip.i€Z, and Xxg;,j€Z, “

Theorem 1.

The solution of equation (3) with boundary conditions (4)
is given by

i—1

p=l

o ®)

o J

Z (Z‘—p—l,j—q—lBl + Y;—p,j—q—1Bz )upq

J _
ZT poj- 1(Axpo"'B”po)"'z1 i1,j— q(A2x0q+Bzuoq)+Z 1, - 1A0
q:
j-1 _ _ i1 j-1
T, j—q—lexoq +T . j—1A0”00 + T p1,j—q-1
g=1 p=04=0

where the transition matrices 7,, are defined by the formula
I, forp=q=0
ATy g1+ AT, g+ AT,

p-1 g-1

T —

p —cha,ﬂ(p—k,q—l)Tkz for p+q>0
k=0
k+l

1=0
<p+q-2

0 (zero matrix) for p <0 or/and ¢ <0
(6)
Proof.

Let X(z1, z,) be the 2D Z-transform of x;; defined by

ZZXUZI 22 (7

i=0 j=0

X(z1,29)=2Z[x

Taking into account that

Zx.,,,.1=22,[X(z,2,) - X(2,0) - X(0,2,) +x,]

2, 1= 2 X (52) - XO.2)) X(O0,7)= %, 27
(®)
Ax,41=21X(E2) = X, 00 X(5,00=2 %07

k-
Z[xi—k,j—l] =z,"z, X(z,2,)
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p=04¢=0

then from (3) with (4) we obtain

X(z,2,)=G"(z,2){(B, + Bz +B,z)U(z,,z,) -

z,[4,B,] *0,2) ~z,[4,B,] Y@\ )
114455 U(O,Zz 255 U(Zl,())

I’Z

z.z,[X(z2,,0)+ X (0,z,)—x,, ]}
where
G(z,,z,) =

g (10)

1,2z, +Z ZIncaﬁ (k,Dzy* 2,0 — 4~ 4z — 4,2, |,
k=0 =0
k+1>1
and U(z,2,) = Z[u;]
Let
© ®

G (z1,2,) = ZZTMZ;(P“)ZZ‘@“) (11)

p=0g=0
From the equality
G7(21,20)G(21,22) = G(21,2,)G (z1,25) = I,

it follows that



[Z z quZ;(p+l)Z;(qH) j G(Z] , Zz) —
G(Zl, Zz)(z szqzl—(pH)Zz—(qH)] — ]n

Comparison of the coefficients at the same powers of z;
and z; of (12) yields the formula (6).
Substituting (11) into (9) we obtain

(12)

0

X(Zl’zz) :(Z

o0
rq
p=0 g=0

—(p+1) _—(g+1
T ZI(IH)ZZ(W)j><

B +Bz +B.z)U AB X0.2,)
+ + - -
( 0 IZI 222) (ZI’ZZ) Z][ 1 I:| U(O’Zz)
X(z,,0)

Zz[ZZBz][U(z 0)

} +2,2,[X(z,,0)+ X(0,2,) - xoo]}
(13)

Using the 2D inverse Z transform to (13) we obtain the
desired formula (5).

3. EXTENSION OF THE CAYLEY-HAMILTON
THEOREM

From (10) we have

G(21,22) =2122G (21, 22) (14)
where
_ Li+1L,+1
G(z,z,)=1, +Z Zlncaﬁ(k,l)zl_kzz_l -
k=0 [=0 (15)

/R U -1 g -1
Az z; — Az, — 4,z

Let
Nl NZ
al -k _—l
det G (z1,22) = D D an w17 23 (16)
k=01=0

It is assumed that / and j are bounded by some natural
numbers L, L, which determine the degrees Ni, N,.
From (14) and (11) it follows that

G '(z,2,)=2"2,'G ' (z,2,) =

-1 -1 —p -
Z, z, Z:Z:quz1 Pz,
p=0g=0
and
_ o0 o0
G (z.29) = ZZTMZ;PZ;‘I (18)
p=0g=0

where T,,, are defined by (6).
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Theorem 2.

Let (16) be the characteristic polynomial of the system (2).
Then the matrices T, satisfy the equation

N N,

ZZalekl =0 (19)

k=01=0
Proof.

From the definition of inverse matrix and (16), (18) we
have

Adj (_;(21922):

Ny N, L =) ~ ~ (20)
[Zzale,Nzlzl kzzlj(zszqzl pzqu

k=0 [=0 p=0 g=0

where Adj 5(21,22) is the adjoint matrix of 5(21,22).
Comparison of the coefficients at the same power

27 M2 of the equality (20) yields (19) since the

degrees of AdjG (zy,z,) are less than N; and N, .

Theorem 2 is an extension of the well-known classical
Cayley-Hamilton theorem for the 2D fractional system (2).

4. POSITIVITY OF THE FRACTIONAL 2D
LINEAR SYSTEMS

Lemma 1.

a) If O<a<landl<fB<2 then

Cap(k,1)<0 for k=12,.; 1=23,. (21a)
b) If I<a <2 and 0< g <1 then

Cop (k1) <0 for k=23,..; [=12,.. 21b)

Proof.

The proof will be accomplished by induction.
The hypothesis is true for K =1 and / = 2 in (21a) since

Cop(1.2)=(-1)° %w

Assuming that the hypothesis is true for the pair
(k,0), k+1>3 we shall show that it is also valid for the

pairs (k+1,0), (k,l +1) and (k+1,/+1).
From (1b) we have

l-a
Caﬂ(k+1,l) = Caﬂ(k,l)m< 0

since Cap (k,[)<0 for k=12,...; [ =23,...

Similarly
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Coplh,l+1) = caﬁ(k,z)kl_T‘lx <0

since caﬁ(k,l)<0 for k=12,.; 1=23,...

and

@-pi-p _,

Cop(k+11+1) = g (k,) 00D

since €, (k,1)<O0 for k=12,...; [=23,...
The proof of (21b) is similar.
Lemma 2.

If (21) is met and

A € R for k=0,1,2 (22)
then

T, e RY" for pgeZ, (23)
Proof.

If the conditions (21) and (22) are satisfied then from (6)
we have (23).

Definition 2.

The system (2) is called the (internally) positive fractional
2D system if and only if x; e R} and y, e R}, i,jeZ,
for any boundary conditions x, € R", ieZ,
x,, €R,, Jje€Z, and all input sequences u, € R,

iL,jeZz,.
Theorem 3.

The fractional 2D system (2) for 0 <a <1 and 1< <2
(or 1<a <2 and 0 < B <1)is positive if and only if

A e R B e R k=0,1,2,

(24)
CeRP" DeRP™
Proof. Necessity.
Let us assume that the system is positive

and xgo—e,;, i=1,...,n (e, is the ith column of 1,) x¢;=x;0=0
uj =0, ijeZ.. Then from (3) for i=/=0 and u;=0 ijeZ.

we obtain x|; = dge,; = Ag; € R, where Ay; is the ith

column of the matrix A,. This implies 4y € R">" since

X1 = Aje,; = A; e R} and this implies 4, e R,
In a similar way we may prove that 4, € R”>". Assuming
ugo=en;, ;=0 ijeZ; >0 and x4p=x0=x0;=0 from (3) for
i=j=0 we obtain x;| = Bye,,; = Bo; € R for i=1,...,m and
this implies By e R’ . In a similar way it can be shown

that By e R for k=1,2 and Ce RY™", De R,

Sufficiency.

If the conditions (24) are met then by Lemma 2
T, € RY" and from (5) we have x; e R} for i,jeZ,
since x;0 e RY, xo; €eRY and wy; e Ry for i,jeZ,.
From (2b) we have y; € RY since Ce R, DeRY™

and x; eRY, u; eRY fori,jeZ,.

Remark.

From (1b) and (3) it follows that if « = f, 0 <a <1 then
coplk,1)>0 for k,/=12,.. and the fractional 2D system

(2) is not positive.

5. REACHABILITY AND CONTROLLABILITY
TO ZERO

Definition 3.

The positive fractional 2D system (2) is called reachable
at the point (h,k)eZ, xZ, if and only if for zero

boundary conditions (4) (x,0=0, i€eZ;, x,=0, jeZ.) and

every vector x e R’ there exists a sequence of inputs

pm
u; € Ry for

(i, /)€ Dy, =

{(G,j))eZ. xZ :0<i<h, 0L j<k,i+j#h+k}
(25)

such that x; =x.

A vector is called monomial if and only if its one
component is positive and the remaining components are
Zero.

Theorem 4.
The positive 2D fractional system 2)

is reachable at the point (%, k) if and only if the reachability
matrix

i=1,....n. If we assume that x;;=e,, Xo=x0:=0
and wu; =0, ijeZ then from (3) for i=/=0 we obtain
Ry =[My,M},..M} M2,...M? M,,...M;,My,...M,, ] (26)
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M,= Th—l,k—lBO’ Mil = Th—i,k—lBl + Th—i—l,k—lBO’ i=L...,h
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2 _ _ 27)
M; = Th_l,k_le +Th—1,k—j—lBO’ j=L..,k
M; =Th—i—1,k—j—1BO +Th—i,k—j—1Bl +T1, iy Bas 1=, why j=1ok
contains » linearly independent monomial columns.
where
Proof.
Using the solution (5) for i=h,j =k and zero boundary
conditions we obtain
Xf = thu(h,k)
(28)
T T T T T T T T T T
u(hy k) = [ty s Uy seees U s U smees U s Uy pseees Uy s U psees Uy oy ] (29)
and 7T denotes the transpose.
For the positive fractional 2D system (2) from (27) and (26) 7 0 1 1 1 0 7 1 0
we have My eR™", M} eRT™, Mj2~ e Ry, R S ) G RS U R S I O
(31

My € R i=1hj =1,k and Ry eRyLEDEDT

From (28) it follows that there exists a sequence u;; € RY

for (i,j) € Dy, for every Xy eR! if and only if the

matrix (26) contains n linearly independent monomial
columns.

The following theorem gives sufficient conditions
for the reachability of the positive fractional 2D system (2).

Theorem S.
The positive fractional 2D system (2) is reachable at the

point (h,k) if rank Ryu=n and the right inverse R’y
of the matrix (26) has nonnegative entries

_ T T -1 [(h+1)(k+1)~1]mxn
R;k =Ry, [Ry Ry 1 €Ny (30)
Proof.

If rank R,=n then there exists the right inverse Ry

of the matrix R If the condition (30) is met then from (28)
we obtain

u(h, k)= Rirzkxf c m[th+1)(k+1)_1]m
for every x , e Y.

Example 1.

Consider the positive fractional 2D system (2) with

QUL

To check the reachability at the point (%,k) = (1,1) of the
system we use Theorem 4. From (27) and (26) we obtain

1, 0

) 1
Ml :Bz = 1’Ml/:0

fori>1j>1

R—MMle—lol 32
11 =My, My, 1]—011 (32)

The first two columns of (32) are linearly independent
monomial columns and by Theorem 4 the positive
fractional 2D system (2) with (31) is reachable at the point
(1,1). The sequence of inputs steering the state of the

system from zero boundary conditions to an arbitrary state

2 . . . Upo
Xy eRy at the point (1,1) is given by { }zxf
U1 '
and ug; =0.

Using (30) and (32) we obtain
T T -1
RZk =Ry [Ry Ryl =

1 _

O (33)
=0 1 =—|-1 2

1 1
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From (33) it follows that the condition (30) is not satisfied
in spite of the fact that the system is reachable at the point
(1,1). Note that the system is reachable at the point (1,1) for
any fractional orders (o, ) 0 < a<1,1< <2 (or 1<a <2,
0 < fB<1) and any matrices Zk ,k=0,1,2.

Lemma 3.

If the positive fractional 2D system (2) is with finite memory then

Definition 4.

The positive fractional 2D system (2) is called the system
with finite memory if its characteristic polynomial has the
form

det G(zy,2y) =cz{' 2 (34)

where c is a constant coefficient.

1 _ _ J _ _ _
X (6, ) = Z; (T i+ T, 1 40)X 0 +Z; Ty g+ T A)Xe, + Ty 1 ApXe =0 (39)
= =

for i > ny, j > n, and any nonzero boundary conditions (4).

Proof.

Using the expansion (11) and (34) we obtain 7j; =0 for

i2ny;,j=ny, and the equality (35) for any nonzero
boundary conditions (4).

Definition 5.

The positive fractional 2D system (2) is called reachable for
the nonzero boundary conditions (NBC)

xi0 €N, ieZ, and xp; eRY, jeZ, (36)

at the point (4,k) € Z, xZ, if for every vector x, € R
there exists a sequence of inputs u;; € R for (i, j) € Dy

such that Xnk = .)Cf .

Theorem 6.

The positive fractional 2D system (2) is reachable for NBC
at the point (h,k) (h 2 ny, k =2 ny) if and only if the system

is with finite memory and the reachabilty matrix (26)
contains 7 linearly independent monomial columns.

Proof.

Using the solution (5) for i=h, j=k and taking into

account that x;; =x , we obtain
Xf —Xpe (h, k) =thu(h, k) (37)

where Ry, and x.(h,k) are defined by (26) and (35)

respectively.
If the positive fractional 2D system (2) is with finite
memory then by Lemma 3 there exists a point (4,k)
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(hzny, k=n;) such that (35) holds and x=Ryu(h.k). In this
case by Theorem 4 there exists a sequence of inputs

u; € R for (i,j) e Dy, satisfying the equality (28).
If it is not the case then x ; —xp.(h,k) & Ryu(h,k) since
by assumption the NBC (36) are arbitrary and the vector
xXpe€ R’ is also arbitrary. In this case there does not exist
a sequence of inputs u;; € R for (i,j) e Dy, satisfying
37).

Definition 6.

The positive fractional 2D system (2) is called controllable
to zero at the point (4,k) (h>n;, k>n;) if and only if for any

NBC (36) there exists a sequence of inputs u;; € R for

(i, j) € Dy, such that x;;, =0.

Theorem 7.

The positive fractional 2D system (2) is controllable to zero
at the point (h,k) (h>n;, k>n,) if and only if the system
is with finite memory.

Proof.

If the system is with finite memory then by Lemma 3 (35)
holds for h>n; and k=n,. For x~0 from (37) we have

Xpe (M k) + Rypu(h, k) =0 (38)
The equation (38) is satisfied for u(h,k)=0.

If the condition (35) is not satisfied then does not exist

u(h, k) e RADEDM - ooicfying (38) since for the
positive system Ry e RPHDED-1m 5pq

Xpe (k) € R



6. CONCLUDING REMARKS

A new class of 2D fractional linear systems has been
introduced. The notion of (¢, f) orders 0 < @< 1,1 < <2
or 1 <a<2,0< <1 fractional 2D difference has been
proposed. The fractional 2D state equations of linear
systems have been given and their solutions have been
derived using the 2D Z transform. The classical Cayley-
Hamilton theorem has been extended for the fractional 2D
systems. Necessary and sufficient conditions have been
established for the positivity, reachability and
controllability to zero of the fractional 2D linear systems.

It has been shown that the fractional 2D system (2) is
positive if 0 < o< 1,1 < f<2orl1<a<2,0<f<1.The
fractional 2D system is not positive if o =

The considerations can be easily extended for fractional 2D
linear systems with delays.

An extension of these considerations for fractional 2D
continuous-time linear systems is an open problem.

Using (A.1) for an 2D discrete function x;; we obtain

NG ny AT _ : k nl n, _ i k
AAG Xy = AFAX, = ;(_1) P e 2D

J i
SEY D E M
1=0 l k=0 k "/

for n,n,e N and i,jeZ,

Note that
1 for k=0 or/and/ =0

(mJ(an: ny (g =1)...(ng =k + 1)y (5 =1)...(n5 —1+1)
o Kl
fork+/>0
(A4)

is also well defined for n—a and n,=f, where « and f are
any real numbers. Thus (A.4) can be used for defining the
a, B orders of an 2D function x;,.
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