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Abstract: In the paper an H∞ velocity control of the robot arm in combination with the hydraulic drive is presented.  
The open-loop system consists of a manipulator with one rotary degree of freedom, a hydraulic servomotor,  
and an electrohydraulic amplifier. The mathematical model of the system is derived. Due to the nonlinearity in the model, 
which is caused by varying operating point parameters and the direction of the servomotor motion, the model  
of multiplicative uncertainty was defined. The plant model transfer function parameters were assumed to be variable. To 
limit error signal, control signal, and output signal three weighting functions were designed. The simulation results of the 
designed H∞ optimal closed-loop system were compared to the standard PID closed-loop system. The solution ensuring 
robust performance was achieved and proved. 

 
 
 
 

 

1. INTRODUCTION 
 

Nowadays, industrial robots (manipulators) are widely 
used in manufacturing tasks. The manipulators are driven  
by hydraulic servomotors, and there is an obvious need  
to achieve robust performance in case of, for example, 
varying parameters that describe such systems. These 
factors influence on time and frequency quality  
of the system, and the standard control methods may  
not be sufficient in such cases. Thus, in this paper the H∞ 
robust control is analyzed. The considered system consists 
of three main elements: the manipulator, which angular 
velocity is to be controlled, the hydraulic servomotor,  
and the electrohydraulic amplifier as an actuator. Models  
of these elements are combined to form the plant model 
with uncertain values of the transfer function parameters. 
The servomotor with the manipulator is a simplified, plane 
mechanism with one rotary degree of freedom. To obtain  
a simple model of the plant some simplifications were 
necessary. Moment of inertia of the servomotor, clearance 
between joints, and friction forces were omitted. 
Additionally, the stiffness of the structure was assumed  
to be infinite. Design procedure of the H∞ robust controller 
requires the model of uncertainty and the weighting 
functions to be included, thus, they are to be designed. 
Every transfer function presented in the article is taken  
to be a function of s , therefore the ( s ) notation will  
be dropped henceforth. 

 
2. CONTROL PLANT 

 
All the considered elements of the open-loop system 

have been identified in (Henzel, 2004) and (Cedro, 2007). 
The first element of the plant is the electrohydraulic 
amplifier with the following 2nd-order transfer function: 
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The model of the servomotor with the manipulator, shown 
in Fig. 1, has been experimentally derived and has  
the general 2nd-order form with three varying parameters: 
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The possible values of parameters: b0, a1 and a0, depending 
on the operating point parameters, have been determined  
as well (Fig. 2). Due to the structural constraints,  
the rotational angle of the robot arm can vary from  
0.4 to 1.5 rad. 
 

 
 

Fig. 1. Sample configuration of servomotor and manipulator  
              with one rotary degree of freedom 
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Introduced elements are combined to form the open-loop 
system model, which is assumed to be the product  
of transfer function of the actuator (1) and transfer function 
of the servomotor/arm (2) with three varying parameters, 
and it has the following 4th-order form: 
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The voltage is the input signal to the plant, and the angular 
velocity of the robot arm, ϕ0, is the output  
signal. The displacement of the hydraulic piston,  
x0 is the transitional signal between amplifier and 
servomotor. 

 

 

 
 

Fig. 2. Relationship between plant model parameters and 
operating point parameters, ϕ0 – rotational angle of the 
robot arm, x0 – displacement of the hydraulic piston 
(Henzel, 2004) 

 
To reduce the number of considered variants resulting from 
(3) and Fig. 2, the nominal (4), the minimal (5), and the 
maximal (6) transfer functions were defined as follows: 
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The nominal plant model was assumed to be the transfer 
function with parameters: b0, a1, and a0, calculated  
as the arithmetic mean of their extreme values. The 
minimal and the maximal plant models were taken to have  
respectively minimal and maximal values of the transfer 
function parameters: b0, a1, and a0. Notice that the maximal 
model has the least gain (Figs. 3, 4). 
 

 
 

Fig. 3. Magnitude-frequency plots of the nominal, the minimal, 
and the maximal plant model 

 

 
 

Fig. 4. Step responses of the nominal, the minimal,  
and the maximal plant model 

 
3. DESIGN PROCESS OF H∞ ROBUST CONTROL 

SYSTEM 
 

The H∞ robust control problem is to achieve such K 
controller that provides minimization of the H∞ norm of the 
considered closed-loop system described by the transfer 
function F(G, K), where G is the plant model: 
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H∞ norm is the supremum (upper bound) of the maximum 
singular value of the closed-loop system represented in the 
frequency domain. 
 
3.1. Design process of PID controller 

 
The design of the PID controller is based  

on the nominal plant model G0 and is required to obtain  
the sensitivity function, the control function,  
and the complementary sensitivity function, which are 
essential to the further weighting functions design. The 
ideal PID controller parameters were selected to achieve 
zero overshoot and sufficiently short settling time  
of the closed-loop system: 
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where: Kp – proportional gain, Ti – integral time,            
Td – derivative time. 
 

The transfer function (8) was then approximated by the 
proper transfer function of the physically realizable PID 
controller that is described as follows: 
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3.2. Weighting functions 

 
The first requirement of the H∞ robust controller 

design procedure is the proper choice of the weighting 
functions that limit the error signal, the control signal,  
and the output signal. For the purpose of the robust design 
three weighting functions We, Wu, and Wy were designed. 
They are based on the sensitivity function, the control 
function, and the complementary sensitivity function, 
respectively: 
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where K  was taken to be PIDK  (9). The designed 
weighting functions have the forms: 
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Magnitude-frequency plots of the weighting functions  

(13)–(15) with corresponding system functions for standard  
PID closed-loop system are presented in Fig. 5.  
 

 
 

Fig. 5. Magnitude-frequency plots of the weighting functions We, 
           Wu, Wy and corresponding standard PID system functions 
 

 
 

Fig. 6. Graphic interpretation of the conditions (16)–(18) 
Weighting functions are properly designed since they 
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satisfy conditions: 
 

( ) ( ) ωωω ∀≤ ,1e jSjW , (16) 
 

( ) ( ) ωωω ∀≤ ,1u jRjW , (17) 
 

( ) ( ) ωωω ∀≤ ,1y jTjW . (18) 
 
The maximal gain of the considered products does not 
exceed the magnitude of 1, which in the logarithmic scale 
equals 0 dB, for every case (Fig. 6). 
 
3.3. Model of uncertainty 
 

The second requirement of the H∞ controller design 
procedure is connected with the definition of uncertainty. 
The robust controller should ensure sufficient time  
and frequency quality of the closed-loop system even  
in case of the difference between the real plant  
and its assumed nominal model. In general, there are two 
kinds of uncertainty models: additive and multiplicative, 
which we define as follows: 
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Thus, the nominal model of the plant with each uncertainty 
will have the general form, respectively:  
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In both cases, the 8th-order uncertainty model is produced. 
To check the differences between each interconnection  
to the nominal plant model, consider Fig. 7.  
 

 
 

Fig. 7. Bode plots of additive and multiplicative uncertainty 
models, and their interconnection to the nominal plant 
model 

 
It is shown that there is no difference between each 
interconnection (two dashed lines agree with each other), 

thus, to include varying model parameters the 
multiplicative uncertainty was chosen (22, Fig. 8b). 
 

 
 

Fig. 8. Representation of additive (a) and multiplicative  
           (b) uncertainty 
 
3.4. Design process of H∞ controller 
 

To obtain the H∞ robust controller a plant 
augmentation is required. The expanded model includes 
4th-order nominal plant model G0, 8th-order multiplicative 
uncertainty ΔM, and three of 1st-order weighting functions 
We, Wu, Wy what produces 15th-order augmented plant 
model. Due to the above, the designed controller  
is described by 15th-order transfer function as well. 
Therefore, to reduce system complexity, the controller 
reduction should be applied. To do it, the Hankel Singular 
Values method was used. This technique estimates  
the “energy” of each controller state, keeping major states 
and discarding the minor ones. Keeping larger “energy” 
states of the controller preserves most of its characteristics  
in terms of stability, frequency, and time responses (Balas  
et al., 2007). Due to the only one dominant state in this 
case, the 14 states were safely rejected (Fig. 9). 
 

 
 

Fig. 9. Hankel singular value plot of the 15th-order controller 
 
Thus, the H∞ robust controller can be simplified  
to the 1st-order transfer function: 
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The time-domain comparison between 15th-order robust 
controller, reduced 1st-order robust controller, and standard 
PID controller (9) is shown in Fig. 10. 
 

a) b) 
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Fig. 10. Step responses: 15th-order robust controller, reduced 
             1st-order robust controller, and standard PID controller 
 
It is shown that in the transient state of the closed-loop 
system the reduced robust controller acts as an integrator, 
and due to its very high gain the steady-state error is almost 
equal to zero. This can be proved using the Final Value 
Theorem (Franklin et al., 2002). 
To determine the H∞ system functions S, R, T the designed 
robust controller (23) can be substituted for K in equations 
(10)–(12). Magnitude-frequency plots of the weighting 
functions (13)–(15) with corresponding H∞ system 
functions are presented in Fig. 11. 
 

 
 

Fig. 11. Magnitude-frequency plots of the weighting functions  
             We, Wu, Wy and corresponding H∞ system functions 
 

 

The comparison between Figs. 5 and 11 shows that the H∞ 
system functions do not contain as high resonant peaks  
for some frequency as the standard PID system functions, 
what is the result of the H∞ norm minimization. 
The comparison between step responses of the designed H∞ 
closed-loop system and the PID closed-loop system for the 
uncertainty model is shown in Fig. 12. 
 

 
 

Fig. 12. Step responses: H∞ closed-loop system  
             (a), PID closed-loop system (b) 
 
The investigated dynamic responses show that the H∞ 
closed-loop system achieves better time-domain quality 
than the PID closed-loop system, since there is no 
overshoot and settling time is sufficiently short for each 
plant model with extreme values of varying parameters. 
Using standard PID control in this case can lead to 
oscillations of the output signal. Thus, PID controller might 
not provide stability  
of the system with, for example, higher ranges of varying 
parameters.  
The comparison between frequency responses of the H∞ 
closed-loop system and the PID closed-loop system for the 
uncertainty model is shown in Fig. 13. 

a) 

b) 
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Fig. 13. Magnitude-frequency plots: H∞ closed-loop system  
             (a), PID closed-loop system (b) 
 
The investigated responses show that the H∞ closed-loop 
system achieves better frequency-domain quality than PID 
closed-loop system, since there is higher high-frequency 
decrease than in the standard PID closed-loop system. 
Therefore, the robust control system can more effectively 
attenuate sensor noises and other high-frequency 
disturbances, which could otherwise shift themselves  
to lower frequencies. 
 
4. CONCLUSION 
 

In the paper the H∞ robust control method was applied 
to control the robot arm angular velocity. Due  
to time-varying plant model parameters, the multiplicative 
uncertainty model was defined. To satisfy the H∞ robust 
controller design procedure requirements, three weighting 
functions were taken into account as well. The time and 
frequency responses of the robust control system  
and the standard PID closed-loop system were investigated. 
The H∞ robust system showed better quality and manifested 
robust performance in spite of uncertainties in the plant 
model. 
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