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Abstract: Deep analysis of the control plant brings many useful information for the designer of the control system.  
The analysis is also important part in the design of active vibration control system.  The coupling of different dynamical 
phenomena in rotating machinery leads to unstable vibrations. Usually,  the coupling effects are caused by changing 
parameters. Angular speed or rotor unbalance in some applications  are such parameters which change in the wide range. 
The problem is to find for which angular speeds we have unstable torsional/lateral vibrations. Usually, the unstable regions 
are in the vicinity of angular speeds where maps of natural frequencies for both dynamical systems cross each other. 
 In the paper there was explained which intersection of torsional and lateral natural frequencies are unstable and why.  
The root locus method was used to explain the phenomenon. It indicated such control procedures which amplify the 
positive   (stabilizing) mechanisms in the rotor dynamics. Such procedures can also lead to the energy saving control laws. 
In the case of lateral vibrations there were considered four control strategies. And these strategies were compared  
to indicate optimal one. 

 
 

 
 

 

1. INTRODUCTION 

The modal control of flexible structures is usually 
applied in analytical papers [Preumont, 2002, Ulbrich  
and Gunther, 2005).  The modal control is a global one, 
while the sensors and actuators are located pointy.  
In control-oriented modeling it is important to find input-
output relations among these points. So more, the simpler 
model of plant the simpler is the control design.  
The following disadvantages of the modal control can be 
noticed: 
− Global approach leads to a plant model which has  

non-physical parameters. 
− The reduction of the modal model leads to “the 

spillover” of the measurement and control effects.  
− The control system is usually far from the optimal one 

from the energy point of view. 
− During the control design we omit the knowledge about 

the plant.  
The disadvantages of modal approach are particular well 
seen in the case of the rotor vibration control. The coupled 
vibrations are often met in the rotordynamics and small 
changes of the value of the coupling parameters can lead  
to the unstable behavior of the rotating machinery.  
So it is important to divide dynamical system into smaller 
subsystems and to find which parameter is responsible for 
the coupling of the subsystems. Such vibration analysis can 
indicate what one should do to design the energy saving 
control system.   

The design procedure of the vibration control system   
is realized in four stages (Fig. 1a). They are: modeling  
of the plant and control system elements, analysis of the 
plant vibrations (in our case of the rotor), the design of the 

control law and after the implementation of the control 
system the experimental validation of the design procedure 
and dynamical behavior of the closed-loop system. 

When the identification procedures were discovered 
(Ejkchoff, 1980; Juang, 1994) the design procedure  
of vibration control system can be realized in the closed 
loop (Fig. 1b). The experimental results can be used  
to identify the real rotor model. So, the improved rotor 
model can be again used in the next steps of the design 
procedure. So more, the identified model is an input-output 
model, so it perfectly suits the design of the control system. 
In the fast prototyping of the mechatronic systems  
we intensively apply the computer aid design methods.  
So, all design steps can be in practice realized parallel 
(Fig.1c). So more, as it was mentioned, the synthesis 
methods can be used to the rotor vibration analysis.   

In the paper the coupling effects will be analyzed in the 
case of the a few-mode rotor model (similar to the 
Jeffcott’s model (Gosiewski and Muszynska, 1992)). In the 
considered case we have coupled torsional/lateral 
vibrations which are described by three nonlinear 
equations. To obtain rotor motion equations one can apply 
the Lagrange’s equations. After linearization in the inertial 
co-ordinate system the equations of rotor vibrations will be 
transformed to the system of co-ordinates which rotates 
together with rotor. 

First, the coupling effect and its influence on the 
stability will be considered in the classical way (Muszynska 
et al., 1992). Next, we define the feedback in the coupled 
system and carry out investigation of the system stability 
with help of Evans method (root locus) known from  
the control theory (Kaczorek, 1993). Such approach leads  
to simple explanation whether given intersection on the 
map of natural frequencies is stable or not. 
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      In the second part of the paper different control 
schemes will be used to stabilize the rotor vibrations in the 
wide range of the rotor angular speed. The energy effective 
control law will be applied to stabilize the laterarl 
vibrations of the rotor. We will check whether the 
controller also correctly stabilize the closed-loop system in 
the case of the torsional/lateral vibrations.  

     All considerations will be illustrated by the results of the 
computer simulations. 

 
 
 
 

MODELLING

EXPERIMENT

SYNTHESIS

ANALYSIS

MODELLING

EXPERIMENT

SYNTHESIS

ANALYSIS

ANALYSIS

SYNTHESIS

MODELLING

MODELLING

EXPERIMENT

 
 

Fig. 1. Design procedure steps of the vibration control system 
 
2. MATHEMATICAL MODEL 

We consider the physical model of flexible rotor shown 
in Fig. 2. The model consists of a rigid disc and a massless 
flexible shaft. The static unbalanced disc is located  
in the center of the shaft.   The shaft is drived by a high 

power motor which rotates with constant angular speed Ω.  
The disc has mass m and inertia momentum Io We assume 
that flexibilities of the shaft in both directions: ξ, η are: 
k1,k2, respectively. The torsional flexibility coefficient is kt. 
 

Fig. 2. Physical model of the anisotropic rotor 
 

Kinetic energy Ek i potential energy Ep of such 
dynamical system are as follows: 

Ek =  ( )2 2 2

2 2
O

S S

Im
x y γ+ + , 

Ep = ( )22 2

2 2 2
tkk k

t mgyξ η γ+ + − Ω − , 

where: xs = x – ecos (γ + δ),  ys = y + esin (γ + δ) are 
coordinates of the disc mass centre S in  inertial coordinate 
system XYZ, while: ξ = xcosγ + ysinγ,  η = -xsinγ + ycosγ 
are co-ordinates of the disc geometrical centre W  
in rotating co-ordinate system ξηζ, which rotates with rotor 
angular velocity Ω. Furthermore: γ – is the angle of the 
shaft twist, e - is the eccentricity (distance) of rotor mass 
centre S from its geometrical centre W, while δ – is the 
angle between unbalance vector and axis ξ.  

Rayleigh’s function of energy dissipation in the lateral 
vibrations  consists of two components. One component 
describes the dissipation caused by external vibration 
damping and second one describes the dissipation caused 
by internal damping. We assume that external damping  
is proportional to the rotor velocity in inertial coordinate 
system while internal damping is proportional to the rotor 
velocity in rotating coordinate system. Therefore,  
the Rayleigh’s function is as follows: 

( ) ( )

( ) ( ) ( )

2 2 2 2 2

2 22 2 2

1 1
( )

2 2
1 1

( )
2 2

r z w t

z w t
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γ

= + + + + −Ω

= + + + Ω + −Ω + −Ω

=

⎡ ⎤⎣ ⎦
where: bz –  coefficient of external damping, bw - 
coefficient of internal damping bt - coefficient of torsional 
damping.
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Lagrange’s equations were used to obtain  
the motion equations of the rotor. The set of three 
nonlinear motion equations with periodic time-varying 
coefficients was obtained.  So the system describes the 
parametric vibrations, where coefficients are a function  

of the rotor angular speed.  To obtain the  system with 
linear time invariant equations the non-linear equations 
were linearized and transformed to the rotating coordinate 
system (Fig.3).  

 

ηξ jw += ηξ jw −=

tjweu Ω= tjewu Ω−= ηξ jw += ηξ jw −=

)(:)( ttYt ϕϕ +Ω= )(tϕ .......1 +±=± ϕϕ je j

jyxu += jyxu −=

 
Fig. 3. Linearization and transformation of the equations describing the torsional/lateral vibrations of the rotor 

 
The final version of the rotor model is as follows: 
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It is seen that equations are coupled by rotor unbalance  
(e ≠ 0). 

The linearized equations in inertial coordinates have 
time dependent coefficients. It means that the rotor 
vibrations can by considered as a parametric vibrations. 
From vibration theory we know that such vibrations for 
some range of parameters are unstable. The angular speed  
Ω is one of the main rotor parameters. Equations in rotating 
coordinates (1) have constant coefficients. Therefore,  
the calculations of unstable ranges of angular speed will be 
much simple, by the analysis of the equations in rotating 
coordinates. 

 

3. FREE TORSIONAL/LATERAL ROTOR 
VIBRATIONS 

 
We omit external excitations. In this case the motion 

equations (1) describe free rotor vibrations:  
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              (2) 

When we use Laplace transform the differential equations 
(2) will be changed to the algebraic form: 

1

2

( ) ( ) ( ) 0

( ) ( ) ( ) 0 ,

( ) ( ) ( ) 0

d d

d d

A s B s D s

B s A s F s

H s K s C s

ξ
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φ

− −
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− −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
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⎢ ⎥ ⎢ ⎥ ⎢ ⎥
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   (3) 

where: 
2 2 2

1 1( ) 2( )d z wA s s h h s ω= + + + − Ω ;   
2 2 2

2 2( ) 2( )d z wA s s h h s ω= + + + − Ω ,   
( ) 2 ( )d zB s s h= Ω + ;                                               (4) 

2 2 2( ) 2 tC s s h s eR μ= + + Ω +
2 2( ) ( sin 2 cos sin )D s e s sδ δ δ= − Ω − Ω − ;          

2 2( ) ( cos 2 sin cos )F s e s sδ δ δ= Ω + Ω − ;   
2
2( ) sinH s Rω δ= − ;  2

1( ) cosK s Rω δ= . 
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    The determinant of the main matrix in equation (3)  
is a characteristic polynomial. When characteristic 
polynomial equals zero we have characteristic equation:  

1 2

2
2 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0
d d d d

d d d

A s A s C s B s F s H s D s B s K s

A s D s H s A s F s K s C s B s

− + +

− − + =
 (5) 

When system is stable the roots (all poles) of the 
characteristic equation have negative real parts. 

 The roots have been calculated in function of rotor 
speed Ω for the following parameters: ω1= 90 [rad/s],  
ω2= 100 [rad/s], μ=150 [rad/s], Rh=0.01, hz=hw=0.04ω1, 
ht=0.02μ, ρ=30o. The results are presented in Fig. 4.  
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Fig. 4. Map of real part (a) and imaginary part (b) of characteristic 
           equation roots (poles) for the torsional/lateral vibrations  
           of the rotor with anisotropic flexibility 
 

In the upper right quarter of the natural frequency map  
(Fig. 4b) we can notice three crossings of the natural 
frequency lines. Two crossings are in spots where torsional 
map meets lateral map: Ω≅μz-(ω1+ω2)/2,  Ω≅μz+(ω1+ω2)/2. 
The third crossing is in the vicinity of the frequency 
Ω≅(ω1+ω2)/2 where the natural frequencies of lateral 
vibrations in two perpendicular directions ζ, η approach 
each other.  In the vicinity of two crossings there  
are unstable ranges of the rotor speeds Ω.  

We will show that the particular subsystems are coupled 
by two particular parameters: rotor unbalance Rh and rotor 
angular speed Ω as it is shown in Fig 5.  

 

Ω

hR
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2

Re
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meRh ==

 
 
Fig. 5. Coupling parameters in considered rotor model 

3.1 Undamped free vibrations of isotropic rotor 

Now, we neglect the damping and assume a rotor with 
isotropic flexibility ω=ω1=ω2=100[rad/s]. In this case some 
of the polynomials (4) reduce to the form: 

2 2 2
1 2( ) ( )d dA A s A s s ω= = = + −Ω ,   

( ) 2dB B s s= = Ω ,         (6) 
2 2 2( )C s s eR μ= + Ω +   

 and characteristic equation can be expressed as the 
algebraic equation: 

6 4 2
1 2 3 0,s a s a s a+ + + =               (7) 

where: 
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o

a pR
a R pR

a R pR
p
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I
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μ ω ω
ω δ ω δ ω

μ μ

= + Ω + +
= −Ω + +Ω + + Ω

= −Ω − + Ω
= + =

= = = + Ω

 

From above coefficients of the characteristic equation  
it results that δ (angle between unbalance vector and axis  
ξ ) does not influence the roots in the case of the isotropic 
rotor. So, we can orient the rotating coordinate system  
in any way against the rotor.  
 The stability condition is that all roots of characteristic 
equations have negative real parts. So using Cardan 
solution of the bi-3-order equation (7) we have obtained the 
stability conditions:   

a3  >  0 , a1   >  0,  

and:                                           (8) 

 a1
2 < 3a2    or  2(a1

2 - 3a2)3 > [al (9a2 - 2a1
2) - 27a3]2,      

when:    a1
2  > 3a2 . 
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From the first inequality (8) we can calculate one  
of the unstable ranges of the rotor speed: 

 
2

2 2
    .z

h zR

μ
ω ω

ω μ
〈 Ω 〈

+
 

It is seen that unstable range always exists when the rotor  
is unbalanced (e ≠0). Second inequality (8) is always 
fulfilled. From the third inequality (8) we have one more 
range of the unstable rotor speeds. Second range of the 
unstable rotor speeds is in the vicinity of the value: 
Ω=ω+μ. 
 Typical maps of  real and imaginary (natural 
frequencies) parts of the roots of characteristic equation  
in function of the rotor angular speed are shown in Fig. 6. 
The analytical considerations are confirmed by the 
computer simulation results. The both mentioned ranges  
of unstable rotor speeds are well seen in Fig.6. 
 

a) 

 
b) 

 
 

Fig. 6. Real part(a) and imaginary part (b) of characteristic 
polynomial roots versus rotor speed Ω for data: ω= 100 
[rad/s], μ=150 [rad/s], Rh=0.1. Two ranges of unstable 
rotor speeds: 97 [rad/s] <Ω< 100 [rad/s],  
256 [rad/s]<Ω<292 [rad/s]. 

 
The unstable speeds are in the vicinity of some natural 

frequency intersections (Fig. 6b). For these frequencies real 
part of roots have positive values (see Fig. 4a). We denote: 
pi – i-th pole of transfer function (root of characteristic 

polynomial), zi – i-th zero of transfer function. This time 
however, in comparison to Fig.4, the intersection  
Ω≅μz-(ω1+ω2)/2 is stable while the crossing 
Ω≅μz+(ω1+ω2)/2 is unstable. So, the problem is how  
to recognize which crossing indicate the unstable ranges.  
To answer question we will reach for a synthesis method 
known from the control theory. 

We consider separately lateral and torsional vibrations. 
The coupling forces from (3) will be taken as external 
excitations: 

( ) ( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ) ( ).

A s s B s s D s s

B s s A s s F s s

C s s H s s K s s

ξ η ϕ

ξ η ϕ

ϕ ξ η

− =

+ =

= +

            (9) 

Two first equations describe lateral vibrations and third one 
describes torsional vibrations. The mathematical model can 
be presented in the form of block scheme, given in Fig.7.  
 

1

2

G (s)
G (s)
⎡ ⎤
⎢ ⎥
⎣ ⎦

 
Fig. 7. Block scheme of the torsional/lateral vibrations  
           of the flexible rotor 
 

It is a dynamical system with feedback loop very well 
known from control theory, where particular transfer 
functions have the form: 
 

1 2 2

2 2 2
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( ) ;  
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+
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ϕ
ξ
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We break the feedback loop in the place indicated by tildes 
to obtain open-loop system. The open-loop transfer 
function is obtained by the multiplication of matrices: 

[ ] 1
3 4 3 1 4 2

2

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ).

( )o

G s
G s G s G s G s G s G s G s

G s
= = +

⎡ ⎤
⎢ ⎥
⎣ ⎦

Taking into account transfer functions (10) we have: 

2 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

[ ( ) ( )] ( )o

H s B s F s H s A s D s K s A s F s K s B s D s
G s

A s B s C s
+ + −

=
+

.            (11) 
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When we introduce the rotor parameters (4), (6) the open-
loop transfer function has the form: 

2 4 2 2 2 2 2 2

4 2 2 2 2 2 2 2 2

{ (3 ) ( ) }
( )

{ 2 ( ) ( ) }( )

( )            

h
o

z

h r

R s s
G s

s s s

R G s

ω ω ω
ω ω μ

− + Ω + − − Ω Ω
=

+ − Ω + −Ω +
=

 (12) 

In the Evans method we will consider rotor unbalance 
parameter Rh as a gain which changes from zero  
to the infinity.  

Now, we analyze the influence of the unbalance  
on the system dynamics. Closed-loop system from Fig.7 
have the following characteristic equation:  
 
1 ( ) 0h rR G s+ =   or:   

1
( ) ,   for  0,r h

h

G s R
R

= − ≥             (13) 

In our case characteristic equation of the closed-loop 
system has the form: 

2 4 2 2 2 2 2 2

4 2 2 2 2 2 2 2 2
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1 0  

{ 2 ( ) ( ) }( )
h

z

R s s
s s s

ω ω ω
ω ω μ

− + Ω + − −Ω Ω
+ =

+ −Ω + −Ω +
 

or                          (14) 
4 2 2 2 2 2 2 2 2 2 4 2 2 2 2 2 2

4 2 2 2 2 2 2 2 2

{ 2 ( ) ( ) }( ) { (3 ) ( ) }
0.

{ 2 ( ) ( ) }( )
z h

z

s s s R s s
s s s

ω ω μ ω ω ω
ω ω μ

+ − Ω + −Ω + − + Ω + − − Ω Ω
=

+ − Ω + −Ω +
 

 
The numerator of the transfer function (14)  

is a characteristic polynomial of the closed-loop system 
(13) and denominator is a characteristic polynomial of the 
open-loop system. 

Gr(s) is a complex number and can be presented  
as a vector in the complex (Gauss) plane. According  
to the equation (13) the transfer function Gr(s)  should 
fulfill two conditions put on the angular location of the 
vector: arg Gr(s)=-180o±360oN, N – integer number and on 
its absolute value: ( ) .1/r hG s R=  

From above conditions it results that for Rh increasing 
from zero to the infinity the open-loop poles (roots  
of denominator polynomial in the transfer function Gr(s)) 
move towards zeros of the same open-loop transfer function 
Gr(s) (roots of numerator in equation (11)). If the number  
of poles is bigger then the number of zeros the other poles 
escape to the infinity along asymptotes which start from the 
central point in the  complex plane. 

 It means that zeros of the open-loop transfer function 
should play important role in the analysis of the unbalance 
influence on the dynamic behavior of the coupled 
torsional/lateral vibrations of the flexible rotor. The real  
and imaginary part of transfer function zeros for rotor 
parameter: ω=100 [rad/s], μ=150 [rad/s], Rh=0.1  
are presented in Fig 8. It is a rotor which poles (natural 
frequencies) are  shown in Fig. 5. 

 As we can see in Fig. 8 the positive real parts of the 
zeros exist only for the rotor speed Ω range from 0 to 100 
[rad/s]. Imaginary parts (frequencies) of zeros 
changestogether with rotor angular speed Ω and increase 
parallel to real parts of poles (natural frequencies)  
of the lateral vibrations. 

For small angular speed of rotor the system can be 
unstable for very big values of Rh because two of  zeros  
in transfer function Gr(s) are real and positive. But value  
of unbalance for which it happens is unrealistic. When  
all zeros and poles of transfer function are purely imaginary 
the root locus plot moves along imaginary axis. In this case 
each pole has its associated zero which is a target for locus 
line. Two biggest poles moves to infinity along imaginary 

axis. Such rotor is completely stable for all values  
of unbalance Rh. 
 
a)

 
b) 

 
 

Fig. 8.  The ranges of rotor speed where we can find such 
unbalance, which destabilize rotor vibrations Real parts 
(a) and imaginary parts (b) of zeros in the transfer 
function Gr(S)  versus rotor angular speed Ω drown as a 
bold lines. Slim lines in Fig.(b) show the natural 
frequencies of uncoupled torsional/lateral vibrations 
(poles of the transfer function Gr(S)).   
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Such harmony is destroyed when rotor angular speed 
cross value 245 [rad/s] (see Fig. 8). For angular speeds 
Ω>245[rad/s] the alteration of poles and zeros is replaced 
by close neighborhood of two poles. To reach open-loop 
zeros the locus lines are forced to  make a circles. The 
circle enter the positive side of the complex plane. It means 
the motion becomes unstable for some  values of 
unbalance.  

We conclude that by analysis of the pole and zero 
values we are able to show the ranges of unstable vibrations 
(Fig.8). In first range (to 100 [rad/s]) the instability  
is connected with the real part positive value of two zeros  
of the open-loop transfer function. In second range of the 
unstable rotor angular speeds the alternating pole-zero 
pattern [Preumont, 2002] was destroyed. The neighborhood 
of two zeros and two poles is a simple way to detect the 
unstable behavior of the system. The closer to the crossing 
point on natural frequency map the smaller value  
of unbalance is needed to trigger the instability in both 
ranges. 

3.2 Damped lateral vibrations of anisotropic rotor 

Now, we will consider free damped lateral vibrations  
of an anisotropic rotor. To do this we reduce (3) 
 to the following algebraic equations: 

1

2

0

0
.d d

d d
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B A
ξ

η

−
=

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦
            (15) 

The determinant of the left matrix compared to zero  
is a characteristic equation: 
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         (16)                      

The roots of the characteristic equation in the function of 
rotor angular speed Ω are presented in Fig.9. 
 After some manipulations of characteristic equation 
(16) we can find the ranges of the unstable rotor speeds. 
For ω1<ω2 the first range is: 2 2 2 2

1 2z zh hω ω− < Ω < − .  

The second range is when angular speed crosses the value: 

1
z w

w

h h
h

ω
+

Ω >
⎧ ⎫
⎨ ⎬
⎩ ⎭

. The first range of unstable rotor speeds 

vanishes when external damping crosses the value: 
( )
( )

2

2 1 2

2 2
1 2

.
8zh
ω ω

ω ω

−
〉

+
 

As it is seen in Fig.9a for both unstable ranges the real 
parts of some roots become positive. 
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Fig. 9. Real (a) and imaginary (b) parts of the characteristic 

polynomial roots versus rotor angular speed Ω for lateral 
vibrations. 

 
Once again we use feedback loop to decompose  

the system into smaller parts. We separate two 
perpendicular directions of the rotor lateral vibrations.  
The block scheme of the system is shown in Fig. 10. 

ξ

η

Fig. 10. The block scheme of rotor lateral vibrations 
  
The open-loop transfer function is as follows: 

1 2( ) ( ) ( ),od d dG s G s G s=                            (17) 

where: 

1 2
1 2

( ) ( )
( ) ;    ( ) ;

( ) ( )d d
d d

B s B s
G s G s

A s A s
−

= =  
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Finally, we have: 

 

2 2

2 2 2 2 2 2
1 2

4 ( )
( ) ( )

[ 2( ) ][ 2( ) ]
z

od d rd

z w z w

s h
G s R G s

s h h s s h h sω ω
Ω +

= =
+ + + −Ω + + + −Ω

            (18)

       

The poles of the open-loop system for different rotor 
speeds are presented in Fig.11. The transfer function of the 
open-loop system has one doubled zero and it is negative 
since:         z1=z2= -hz.  It is evident (see Fig.11)) that open-
loop system is unstable for: Ω>ω1  while closed-loop 
system (Fig. 9)  
is stable also in the range ω2<Ω<ω1(hw+hz)/hw. To find 
mechanism which extends the range of stable rotor speeds 
we will again use the Evans method. According  
to the method some system poles will approach negative 
open-loop zeros while the remain ones escape along the 
vertical  asymptotes. We assume that rotor rotation  
is a cause of this mechanism so we introduce an artificial 
Evans’ gain in the form: 

24DR ρ= Ω                            (19) 

For ρ=1 we have nominal state of the open-loop system 
(18). It is interesting to find for what values of the gain ρ 
the root locus cross the stability border on the Gauss plane. 
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Fig. 11. Real (a) and imaginary (b) parts of the open-loop system 
             poles versus rotor angular speed 

 
 

Fig. 12. Root locus of the rotor lateral vibrations in function  
             of the gain ρ for angular speed Ω=95[rad/s] 
 

 

Fig. 13. Root locus of the rotor lateral vibrations in function  
             of the gain ρ for angular speed Ω=130 [rad/s]. 
 

 

Fig. 14. Root locus of the rotor lateral vibrations in function  
             of the gain ρ for angular speed Ω=200 [rad/s] 
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 The root locus for unstable rotor speeds 95 [rad/s]  
and 200[rad/s] are presented in Fig. 12 and 14, respectively. 
The root locus for stable rotor speed 130[rad/s] is shown  
in Fig.13. The black square in Figures indicate the point  
on one of the root locus lines which is connected with the 
pole on the stability threshold. The parameters of the point 
are described in the Figure. For example, the overshoot on 
the stability border should be 100% for complex poles. The 
gain is the Evans gain (value of considered coupling 
parameter). 

The imaginary axis divides the poles into stable and 
unstable ones. In the case of unstable rotor speeds the gain 
ρ crosses value 1 (ρ>1) when root locus cross the imaginary 
axes. It means that actual rotor speed Ω2 is insufficient  
to stabilize the rotor for given speed. 

3.3. Full model 

Now, we  return to the full model (8) whose poles  
are presented in Fig.2.  Since now we know that zeros  
of open-loop system play important role in the stability 
analysis we have calculated them and they are presented  
in Fig. 15. 
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Fig. 15. Real (a) and imaginary (b) parts of zeros (bold lines)  

and poles (slim lines) of the open-loop transfer function 
designed for damped anisotropic rotor 

  
Fig. 16. Root locus for rotor angular speed Ω=150[rad/s] 
 

 
Fig. 17. Root locus for rotor angular speed Ω=220[rad/s] 
 

We have shown in Figs 16, 17 the root locus for the two 
rotor speeds: 150, 220 [rad/s], respectively. In the case  
of Ω=150[rad/s] the rotor motion is practically stable  
for any unbalance. When rotor rotates with angular speed 
Ω=220[rad/s] the system is unstable and the unbalance 
practically has no influence of the dynamical state.  
The instability of the system is connected with internal 
damping.  

The decomposition of coupled vibrations gives many 
advantages in the analysis of the system stability.  
The deviation of the system into smaller ones allows  
to reduce the calculations. It gives deeper insight into 
connections of the vibrations with changes of chosen 
parameters. Many vibration phenomena can be simply 
explain. 

In the case of the considered torsional/lateral rotor 
vibrations we have carried out decoupling of the vibrations 
on two levels. First, we separated the torsional and lateral 
vibrations to analyze influence of the rotor unbalance on 
the rotor dynamics. Next we decoupled lateral vibrations 
into vibrations of the perpendicular directions. Such 
decomposition allowed us to show the stabilizing 
mechanism generated by rotor rotation. 

Such approach give deeper insight into dynamical 
system as a control plant. Analysis of the plant dynamics 
allows to find the best strategy of the design procedure  
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of the active vibration control system. We hope that  
the decomposition will also be useful in the diagnostic 
systems. 

4.  CONTROL OF THE DAMPED LATERAL 
     VIBRATIONS OF THE ANISOTROPIC ROTOR  

After reanalysis of the results from section 3.2 we can 
improve dynamic performance of the closed-loop system 
(stabilization of the rotor displacement and improvement  
of the transient parameters) by: 
- additional external damping, 
- additional gyroscopic effect, 
- change of system stiffness, 
- active rotor balancing. 

 Let us consider the equations of lateral vibrations  
of the anisotropic rotor in form convenient to design the 
control law. First, the control forces are introduced to rotor 
movement equation (15):   

1

2

d d

d d

fA B
fB A
ξ

η

ξ
η

− ⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦
,             (20) 

where: 
2 2 2

1 1( ) 2( )d z wA s s h h s ω= + + + −Ω ;   
2 2 2

2 2( ) 2( )d z wA s s h h s ω= + + + −Ω ;  
( ) 2 ( )d zB s s h= Ω + . 

After some calculations the relationships between control 
forces and rotor displacements have the form: 

2

1

( )( ) ( )( ) 1
( )( ) ( )( )

d d

d dop

f sA s B ss
f sB s A ss D
ξ

η

ξ

η
=

−

⎡ ⎤⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦
                       (21) 

where: 
 

2
1 2( ) ( ) ( )d d dopD A s A s B s= +            (22) 

 
is a characteristic polynomial of the plant.  

This is the control model which has two inputs (control 
forces) and two outputs (measurement signals) connecting 
with two directions of analysed rotor vibrations: ξ, η. This 
relationship can be presented in matrix form as follows:  

 

( ) ( ) ( )r r rs s s=Y G F ,              (23) 

where: 
 

2

1

( )
( ) ,    

( )

( ) ( )1
( ) ,   

( ) ( )

( )
( )= .

( )

r

d d
r

d d

r

op

s
s

s

A s B s
s

B s A sD

f s
s

f s
ξ

η

ξ

η
=

=
−

⎡ ⎤
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥
⎣ ⎦

⎡ ⎤
⎢ ⎥
⎣ ⎦

Y

G

F

          (24) 

 

The denominator of transfer function G(s) is a 
characteristic equation of the control plant given as follows: 
 

2 4 3 2
1 2 3 2 1 0( ) 0.d d dopD A A B s b s b s b s b= + = + + + + =      (25) 

Where: 

3

2 2 2 2
2 1 2

2 2 2
1 1 2

2 2 2 2 2 2
0 1 2

2 2 2 2 2 2 2 2 2
2 1 2 2

4( ),

4( ) ( 2 ),

2( )( ) 4 ( ),

( )( ) 4

  ( ) 4 ( )( ).

  

z w

z w

z w z w

z

z

b h h

b h h

b h h h h

b h

h

ω ω

ω ω

ω ω

ω ω ω ω

= +

= + + + + Ω

= + + + Ω −

= − Ω −Ω + Ω =

= −Ω + Ω + − −Ω

        (26) 

According to Hurwitz criterion, the open-loop system  
is stable if all coefficients (26)  of the polynomial have the 
same sign (positive) and minor determinants of Hurwitz 
matrix are positive. As it results from equations (26) 
coefficients b3, b2 are always positive. The coefficient b1  
is positive for rotational speeds described by condition: 

2 2
2 1 2( )( ) .

2( )
z w

w z

h h
h h

ω ω+ +
Ω <

−
                                  (27) 

The condition above confirms the known phenomena - 
external damping increases and internal damping decreases 
the range of stable rotor speeds.  The coefficient b0 has two 
parts. The second part 4Ω2h2

z  is always positive and the 
first one (ω1

2-Ω2)(ω2
2-Ω2)  is positive for all rotor speeds 

except the range:  

1 2.ω ω<Ω <                                               (28) 

This unstable range of rotational speeds was earlier 
considered and it is a result of anisotropic rotor stiffness.  

According to Hurwitz criterion in case of considered 
rotor system the additional two minor determinants should 
be positive: 

2 3 2 1

2 2
3 3 2 1 3 0 1

0,

0.

b b b

b b b b b b

Δ = − >

Δ = − − >
                    (29) 

After calculations the first minor determinant is given by: 
3 2 2

2 1 2

2

16( ) 2( )( )

4 (3 ).
z w z w

z w

h h h h

h h

ω ωΔ = + + + + +

Ω +
               (30) 

Thus, the minor determinant Δ2 is positive for any 
rotational speed of the rotor. The stable range of rotational 
speeds can be calculated from condition: Δ3=b3b2b1-b3

2b0-
b0

2>0.  
It is quite difficult to calculate the condition analytically.  
If we assume zero damping, the condition above can be 
written in simpler form: Δ3=-b0

2>0. For this condition the 
stable range of rotational speeds is given by inequality (28).  

The control forces can be written as functions  
of measurement signals. These relationships are called 
control law. Let us consider four control laws. To compare 
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the control laws in all control directions let introduce 
similary gain coefficients k. In general case, the control law 
can be presented as follows: 

( ) ( ) ( )r r rs s s= −F K Y .                    (31) 

After introducing of the control law to the equation  
of control plant (23) the closed-loop system is as follows: 

[ ( ) ( )] ( )r r rs s s+ =I G K Y 0 ,           (32) 

where, the characteristic equation of the closed-loop system 
is given by: 

det[ ( ) ( )] 0.r rs s+ =I G K             (33) 

In order to estimate the stability range of closed-loop 
system and to obtain the proper parameters of the controller 
(in our case the gain parameter k), the roots of the closed-
loop characteristic equation should be analyzed. 

The equation (31) describes the control law in rotational 
coordinate system. In practice, the rotor vibrations  
are controlled in non-rotating inertial coordinate system. 
Thus, we introduce the transformation matrix between 
coordinates of rotating and non-rotating coordinate 
systems: 

 

( ) sin cos ( )

( ) cos sin ( )

t t t x t

t t t y t

ξ

η

Ω Ω
=

− Ω Ω
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

,                 (34a) 

that is: 

( ) ( )r t t=Y TY .                                                            (34b) 

The transformation matrix T is orthonormal. Thus,  
the inverse matrix is obtained as: T-1=TT. 

The control forces (31) should also be calculated  
in inertial coordinate system. Thus, we also introduce  
the transformation matrix T to obtain the control forces: 

( ) ( )sin cos
( ) ( )cos sin

x

x

f t f tt t
f t f tt t
ξ

η

Ω Ω⎡ ⎤ ⎡ ⎤⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥− Ω Ω⎣ ⎦ ⎣ ⎦⎣ ⎦

,        (35a) 

that is: 

( ) ( )r t t=F TF .             (35b) 

After putting the formulas (34b) and (35b) into the control 
law (31) we obtain: 

( ) ( ) ( )rt t t= −TF K TY                             (36) 

After some calculations the control law in non-rotating 
coordinate system is as follows: 

( ) ( ) ( )s s s= −F K Y ,              (37) 

where, the gain parameter of controller  can be obtained 
from relation:  
 

( ) ( )T
rs s=K T K T .              (38)  

 
So the control law can be calculated in rotating coordinate 
system (which is advantageous in case of parametric 

vibrations) and the last equation can be used to transform  
it to the inertial coordinate system. 

4.1 Active damping of rotor vibrations 

The damping forces are proportional to the velocity  
of vibrations. Let us introduce the control law where  
the control forces are proportional to the vibration velocity 
and there are no crossing couplings (see Fig. 18). Without 
cross couplings there are only two paths in the controller 
between particular control forces and rotor velocity in each 
of the control directions. Thus, the control law is given  
by formula: 

1

( ) 1 0 ( )
  ( )= .

( ) 0 1 ( )r

f s s
s k s

f s s
ξ

η

ξ

η
= −

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

F          (39) 

that is: 

1
1

1

0
  ( ) .

0r

k s
s

k s
=
⎡ ⎤
⎢ ⎥
⎣ ⎦

K                     (40) 

 

 
 

Fig. 18. The closed-loop system with the active damping  
             f rotor vibrations  
 
The characteristic equation of closed-loop system  
with control gain Kr1 is given by: 

1

2 2
1 1 1 2

det[ ( ) ( )]

( ) 0.
r r

d dop

s s

k s k A A sD

+ =

+ + + =

I G K
                                    (41)             

The first part of equation (41) is the characteristic equation 
of control plant (23). The another two parts are an appendix 
to the rotor dynamics introduced by the control law and the 
appendix has the form of the polynomial:  

2 2 3 2
1 1 1 2 13 12 11( ) ,d dk s k A A s b s b s b s+ + = + +                  (42) 

where: 

13 1
2

12 1 1
2 2 2 2

11 1 1 2

2 ,
4 ( ) ,

[( ) ( )].
z w

b k
b k h h k
b k ω ω

=
= + +
= −Ω + −Ω

            (43) 

From above results the control law influences  three middle 
coefficients of the characteristic equation of the plant. 

For the control plant with parameters: ω1= 90 [rad/s], 
ω2= 100 [rad/s], Rh=0.01, hz=hw=0.04ω1, we have 
calculated such gain coefficient k1 of controller which 
brings the closed-loop system at the stability limit. These 
values of coefficient k1 for different rotor angular speed Ω 
are called the critical coefficients. We are looking for such 
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control systems which stabilize rotor dynamics in given 
range of the rotor speeds.  
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Fig. 19. Critical gain coefficients k1 in the Kr1 controller for rotor 

angular speed Ω from 0 to 300 [rad/s]  
 
Unfortunately, the active control of rotor vibration 

damping does not ensure the stability for all rotor angular 
speeds (see Fig. 19).  That is because the controller with 
gain coefficient k1 do not influences the coefficient b0  
in the characteristic equation. Therefore, we have two 
unstable ranges of rotor vibrations: 92 [rad/s]<Ω<98 [rad/s] 
and Ω>179 [rad/s], which do not depend on controller 
coefficient k1.  

According to equation (38) we can control law  
in rotating coordinate system transform to the non-rotating 
coordinate system. The matrix Kr1 is an identity matrix 
multiplied by scalar k1s. Therefore, the control law in the 
non-rotating coordinate system according to the equation 
(38) have the form:  

 

1 1 1( ) ( ) ( ).T
r rs s s= =K T K T K            (44) 

In this case the control laws in both coordinate systems - 
rotating and non-rotating - are identical. 

4.2. Active gyroscopic damping  

The gyroscopic forces are proportional to values of 
rotor rotational speed. However, their direction is 
perpendicular to considered rotor movement. Let us 
introduce the control law where the control forces are 
perpendicular proportional to vibrations speed. There are 
only two feedback loops between particular control forces 
and rotor speeds which directions are perpendicular to 
directions of control forces. Thus, the control law is given 
by: 

 
2

2
2

0
   ( ) .

0r

k s
s

k s

−
=
⎡ ⎤
⎢ ⎥
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K             (45) 
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Fig. 20. The closed-loop system with the active gyroscopic      
damping  of rotor vibrations  

 
The characteristic equation of closed-loop system with 

Kr2 control law is given by:  
2 2

2 2 2det[ ( ) ( )] 2 0.r r dops s D k s k B s+ = + + =I G K    (46)       

The first part of equation (46) is the characteristic equation 
of control plant (21). The another two parts are introduced 
by 
the control law of rotor dynamic and are given by:  

2 2 2
2 2 22 212 ,dk s k B s b s b s+ = +            (47) 

where: 
2

22 2 2

21 2

4 ,

4 .z

b k k

b k h

= Ω +

= Ω
             (48) 

The control law (described above) have positive 
influence on the two coefficients but does not change the 
rest coefficients of the characteristic equation..   

Unfortunately, the active gyroscopic damping of rotor 
vibrations does not ensure the stability for all rotational 
speeds (see Fig. 21). That is because the controller with 
gain coefficient k2 does not influence the coefficient b0  
in the characteristic equation. Therefore, we have one 
unstable range of rotor vibrations: 92 [rad/s]<Ω<98 [rad/s], 
which does not depend of the controller coefficient k2.  
For rotational speed higher than 98 [rad/s] the small value 
of gain coefficient k2 is necessary to stabilize the closed-
loop system. The critical value of  gain coefficient k2 
increases with rotational speed Ω. 
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Fig. 21. Critical value of gain coefficient k2 in the Kr1 controller 

stabilizing the rotor vibrations for angular speeds Ω from 
0 to 300 [rad/s] 
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Now, let us to investigate the dynamic of the closed-
loop system for rotor speed Ω=300 [rad/s]. For this 
rotational speed the critical gain k2 of the controller equals 
91 [1/s]. The impulse response of the closed-loop rotor 
system in two directions of the vibrations: ξ, η for gain 
k2=100 [1/s] ( about 10% over critical one) is shown  
in Fig. 22. 

The small damping of rotor vibrations in both control 
directions can be observed. The impulse response  
of the closed-loop system for gain k2=200 [1/s] is shown  
in Fig. 23. The higher gain only  slight improves the 
intensity of vibration damping.  
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Fig. 22. The impulse response of the closed-loop system  
            for the controller gain k2=100 [1/s] 
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Fig. 23. The impulse response of the closed-loop for the controller 
            gain k2=200 [1/s] 
 

Basing on the equation (38) we can control law  
transfer to the non-rotating coordinate system. The matrix 
Kr2 is an identity matrix multiplied by scalar k2s. Therefore, 
in non-rotating coordinate system we have:  

2 2 2( ) ( ) ( ).T
r rs s s= =K T K T K            (49) 

In this case the control laws in both coordinate systems - 
rotating and no rotating - are also identical. 

4.3. Active change of rotor  direct stiffness 

According to Hurwitz criterion, all coefficients  
of characteristic equation of the closed-loop system  
should be positive. If the external damping  

is not big enough the last one of coefficients:  
b0=(ω1

2-Ω2)(ω2
2-Ω2)+4Ω2hz

2 in the characteristic equation  
of control plant (25) is negative for the rotational speeds Ω 
between frequency ω1 and ω2. What more, any of above 
control laws do not change the value of coefficient b0. 
Therefore, the another control law which can change  
the value of coefficient b0 is necessary to be considered.  
The most advantageous is a control law which leads  
to the isotropy of the rotor system. In this case the unstable 
region of rotor vibrations is reduced to zero.  

The stiffness forces are proportional to the displacement  
of rotor vibrations. Let us introduce the control law  
in which the control forces are proportional  
to the  rotor displacements and there are no cross coupling. 
Thus, we obtain two independent feedback loops between 
particular control forces and rotor displacements in each  
of control directions (Fig.24).  

The control law is given by formula: 
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F          (50) 

It means: 

31
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Fig. 24. The closed-loop system with controller  which change  
             the lateral system stiffness  
 

The characteristic equation of the closed-loop system 
with control law K3 is given by:  

3 31 32 32 1 31 2det[ ( ) ( )] 0.r r d dops s k k k A k AD+ = + + + =I G K      (52) 

The first part of equation (52) is the characteristic equation 
of the control plant (23). The another two parts present  
the influence of the controller on the closed-loop dynamics.  
The difference between the characteristic equation  
of closed-loop system and the characteristic equation  
of the plant is a polynomial:  

2
31 32 32 1 31 2 32 31 30 ,d dk k k A k A b s b s b+ + = + +           (53) 

where: 

32 31 32

31 31 32
2 2 2 2

30 32 1 31 2 31 32

,
2( )( ),

( ) ( ) .
z w

b k k
b k k h h
b k k k kω ω

= +
= + +
= −Ω + −Ω +

          (54) 

We assume first that the values of gain coefficients are the 
same: k3=k31=k32. Thus, for the same values of the gain 
coefficients the closed-loop system is stable in full range  
of considered rotor angular speeds Ω (see Fig. 25). 
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However, the value of the critical coefficient strongly 
increases with the increase of the rotational speed. 
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Fig. 25. The critical coefficient k3 of Kr3 controller with the same 
              values of  all gain parameters  
 
 

The controller gain k3 influences three coefficients  
of characteristic equation of the control plant including b0. 

Thus, the last coefficient of the characteristic equation (52) 
of closed-loop system is given by:  

2 2 2 2 2 2
0 30 1 2

2 2 2 2
32 1 31 2 31 32

2 2 2 2
1 31 2

2 2 2 2
32 1 31 32

( )( ) 4

( ) ( )

( )( )

4 ( ) .

z

z

b b h

k k k k

k

h k k k

ω ω

ω ω

ω ω

ω

+ = −Ω −Ω + Ω +

+ −Ω + −Ω + =

= + − Ω −Ω +

Ω + −Ω +

         (55) 

If we assume:  

32

2 2
1 31 2

0,

,

k

kω ω

=

+ =
                      (56) 

the closed-loop system with rotating rotor is stable  
and isotropic.  

In this case the gain matrix of the controller (51)  
in rotating coordinate system has different elements. Thus, 
the gain matrix of controller in non-rotating coordinate 
system basing on the transformation (38) has the form: 

 

2 2
31 32 31 32

3 3 2 2
31 32 32 31

sin cos sin cos sin cos
( ) ( ) .

sin cos sin cos sin cos
T

r

k t k t k t t k t t
s s

k t t k t t k t k t

Ω + Ω Ω Ω − Ω Ω
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Ω Ω − Ω Ω Ω + Ω

⎡ ⎤
⎢ ⎥
⎣ ⎦

K T K T              (57) 
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Fig. 26. The critical gain coefficient k31 of Kr3 controller  
             when gain parameter k32=0 

When we assume in (57) that k32=0, we obtain the control 
law in inertial coordinate system given by:  

2
31 31

3 2
31 31

sin sin cos
( ) .

sin cos cos

k t k t t
s

k t t k t

Ω Ω Ω
=

Ω Ω Ω

⎡ ⎤
⎢ ⎥
⎣ ⎦

K                  (58) 

The control law (58) means that two control inputs and two 
measurement output must be used to ensure the rotor 
isotropic stiffness.  

Let us check the case when gain coefficient k32=0. Now,  
we try to find a value of the gain k31 for which the SISO 
closed-loop system is stable. This situation is presented  
in Fig. 26. It is the same as is Fig. 25. where both gain 
coefficients had the same value. That means, we can apply 
the SISO control system and obtain the same results  
as in two input-two output control. However, the SISO 
control in rotating coordinate system must be transformed  
to two input-two output control system in non-rotoating 
coordinate system (see equation 58). Therefore, it is more 
convenient to apply two input-two output control with  
the same gains in order to avoid time-variant gain 
parameters in the K3 controller. 

4.4 Active change of cross symmetry stiffness 

Now, we consider the control law where the control 
forces are proportional to rotor displacements in the cross 
configuration. Thus, we obtain two feedback loops between 
particular control forces and rotor displacements which 
directions are perpendicular to directions of control forces 
(see Fig. 27). The control law is given by: 

4
4

4

0
  ( ) .

0r

k
s

k

−
=
⎡ ⎤
⎢ ⎥
⎣ ⎦

K             (59) 
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Fig. 27. The closed-loop system with controller  which change the 
              lateral stiffness in cross configuration of the rotor system 

 
The characteristic equation of the closed-loop system 

with control gain K4 is given as follows:  

44 4
2det[ ( ) ( )] 2 0.r r dops s D B k k+ = + + =I G K          (60) 

The two last parts of equation (60) present influence of the 
control law onto rotor dynamics:  

4 4 41 402 ,dB k k b s b+ = +                             (61) 

where: 

4

41 4

2
40 4

4 ,

4 .z

b k

b k h k

= Ω

= Ω +
                             (62) 

This control law (described above) has positive influence 
on the dynamics of the closed-loop. For any values of 
angular speed this control law increases the value of 
coefficients b1 and b0 which represent the negative effects 
of the internal damping and of the rotor anisotropic 
stiffness. 
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Fig. 28. The critical gain parameter k4 in Kr4 controller versus  
              the angular speed Ω 
 

The critical value of gain k4 was presented  
in the Fig. 28. The cross change of system stiffness by Kr4 
controller require significantly reduces the critical gains  
in the comparison with the Kr3 controller. 
     Therefore, we check dynamical behaviour of closed-
loop system for rotational speed Ω=300[rad/s]. For this 
rotational speed the critical gain parameter is k4=900 [1/s]. 
First, we apply the gain parameter k4=1000[1/s2] (about 
10% over the critical one). The impulse responses  
of the closed-loop system in two vibration directions:  

ξ, η for critical gain parameter k4=1000 [1/s] are shown  
in Fig. 29. 
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Fig. 29. The impulse response of closed-loop system for cross  
              symmetric Kr4 controller with gain k4=1000 [1/s] 
 
In above case we can observe small damping of rotor 
vibrations in both control directions. In the next step  
we increase the gain of the controller. The impulse 
responses of closed-loop system for gain controller 
k4=1500 [1/s] atr shown in Fig. 30. It is evident the bigger 
gain parameter k4 improves intensity of vibrations damping.  
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 Fig. 30. The impulse response of closed-loop system for cross  
               symmetric Kr4 controller with gain k4=1500 [1/s] 
 

Now, we will check the stability of the system in full 
range of the considered angular speeds (from 0 to 300 
[rad/s]). The real and imaginary parts of the roots  
of characteristic equation for closed-loop system with 
controller gain k4=1500 [1/s]  are shown in Fig. 31. 
 
 
 
 
 
 
 



Zdzisław Gosiewski 
Control-oriented modelling and control of rotor vibration 

 36 

a) 

0 50 100 150 200 250 300
-18

-16

-14

-12

-10

-8

-6

-4

-2

0

 
b) 

0 50 100 150 200 250 300
-400

-300

-200

-100

0

100

200

300

400

 
Fig. 31. Real (a) and imaginary (b) parts of the 

characteristic equation for gain k4=1500 [1/s] 
 
The closed-loop system is on the border of the stability 

for low rotor angular speeds (in the vicinity of 20 [rad/s]). 
It is appeared that there is upper limit on the value  
of the controller gain to stabilize the system in considered 
range of  the rotor speeds. The upper limit is just k4=1500 
[1/s]. The lower limit of the controller gain was shown 
 in Fig.28. 

The gain matrix of controller (59) in the rotating 
coordinate system has the same two elements with opposite 
signs. The gain matrix of controller in non-rotating 
coordinate system has the form: 

4 4 4( ) ( ) ( ).T
r rs s s= =K T K T K                    (63) 

The control laws in both coordinate systems - rotating and 
no rotating - are identical. 

 

 

4.5. Comparison of control systems  

To compare the different control systems we have taken 
into account the power consumption of power amplifiers 
which is the multiplication of control force and the velocity 
of the rotor vibrations. The most interesting are closed-loop 
systems with controllers Kr2 i Kr4. Thus, let us compare  
the power consumption by these control systems. In the 
case of Kr2 controller the control force is proportional  
to rotational speed and in the second case of Kr4 controller 
the control force is proportional to rotor displacement.  
The main rotor vibration movement is connected  
with angular speed Ω. Therefore, we assume that speeds vx 
or vy in motion directions are proportional to displacements  
in directions x or y and to angular speed Ω. Fig. 32 shows 
comparison of critical gain parameters for the Kr2 i Kr4 
controllers. The Kr4 closed-loop system is definitely the 
best one. 
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Fig. 32. The comparison of two critical gain parameters  
              of control system 
 

The closed-loop system with Kr4 controller ensure  
the stability in full range of considered angular speeds. 
What more, for high rotational speeds the Kr4 controller 
consume less power than others controllers. The Kr4 
controller has also good transient response (compare  
Figs 23 and 31).  

5. CONTROL OF TORSIONAL/LATERAL ROTOR 
      VIBRATIONS 

 Presently, the controller K4 will be joined to the full 
model of the rotor torsional/lateral vibrations. Its influence 
on the dynamic behaviour of the closed-loop system will be 
checked. The full rotor model with control of the lateral 
vibrations is presented in Fig.33. 
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Fig. 33. Block scheme of the considered model for the rotor  

       with active control of the lateral vibrations 
 

To analyze the closed loop system the control forces 
defined as: 

4
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F  

The above input forces are introduced to the lateral 
vibrations model (21)  to obtain the relations between the 
torsional and lateral vibrations in the closed loop system: 

4 2 4 2

1 4 4 1

1 1op d d

op d dop op
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Using above relation we can find the transfer functions 
between the lateral vibrations and torsional vibrations in the 
following form: 
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⎣ ⎦ ⎣ ⎦
 

where Dcl is the characteristic polynomial of the closed-
loop system (60) designed to control lateral vibrations: 

44

22 .dcl opD B k kD = + +  

 In case of the minimal realization of the transfer functions 
the polynomial Dop from the denominator should be 
compensated by the same polynomial in the numerator. The 
above considerations lead to the reduced scheme (Fig. 34) 
were we have the following transfer functions: 
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Fig. 34. Reduced block scheme of the closed-loop system with 
separated transfer functions of lateral and torsional vibrations. 

 
The scheme from the Fig. 34 is very similar  

to the scheme from Fig. 7. Only the transfer functions 
G1(s), G2(s) was replaced by transfer functions G1c(s), 
G2c(s).  
It means that full analysis of the system dynamics can be 
carried out according to procedure shown in Chapter 3. 

6. SUMMARY 

The full analysis of the rotor torsional/lateral vibrations 
is much simpler when we can divide the system into 
smaller subsystems. In this case the calculations are 
simplified  
and we have deep insight into mechanisms leading to good 
or bed behaviour of the rotor motion. It is particularly 
important in the case of the rotor working in the wide range 
of the angular speeds.  Turbo jet engines and flywheels  
are such rotors. For the vibration analysis the methods 
known from control theory was applied. In the paper  
it is Evans method. As well some other control methods  
can also be used to the vibration analysis. 

The proposed approach was testified in the paper on the 
simple 3-mode rotor model (Jeffcott model). The torsional 
vibrations were separated from lateral vibrations  
and a feedback among subsystem was established.  
The subsystems are coupled by rotor unbalance and Evans 
method allows us show the critical values of the unbalance 
which destabilize rotor motion for different angular speeds. 
The lateral vibrations are  stabilized by angular speed 
(rather gyroscopic effects proportional to the angular 
speed) and using again Evans method it is possible to find 
how big value of the rotor speed is sufficient to stabilize 
rotor motion.  

Such analysis of the rotor vibrations appeared very 
useful for the choice of the control strategy. It indicated 
such control procedures which amplify the positive   
(stabilizing) mechanisms in the rotor dynamics. Such 
procedures can also lead to the energy saving control laws. 
In the case of lateral vibrations there were considered four 
control strategies. And these strategies were compared  
to indicate optimal one. 
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